Syntheses of complexes containing substituted 4-ethynylquinolines or 1-azabuta-1,3-dienes by addition of imines to a cationic butatrienylidene-ruthenium complex

Michael I. Bruce ${ }^{\text {a,* }}$, Mingzhe Ke $^{\text {a }}$, Brian D. Kelly ${ }^{\text {a }}$, Paul J. Low ${ }^{\text {a }}$, Mark E. Smith ${ }^{\text {a }}$, Brian W. Skelton ${ }^{\text {b }}$, Allan H. White ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Chemistry, University of Adelaide, Adelaide, SA 5005, Australia
${ }^{\mathrm{b}}$ Department of Chemistry, University of Western Australia, Nedlands, WA 6907, Australia

Received 23 June 1999; accepted 28 July 1999

Abstract

Reactions of $\left[\mathrm{Ru}\left(=\mathrm{C}=\mathrm{C}=\mathrm{C}=\mathrm{CH}_{2}\right)\left(\mathrm{PR}_{3}\right)_{2} \mathrm{Cp}\right]^{+}(\mathrm{R}=\mathrm{Ph}$ or OMe$)$ with arylimines $\mathrm{ArN}=\mathrm{CH}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{R}\right)$ afford either substituted quinolines, $\mathrm{Ru}\left\{\mathrm{C} \equiv \mathrm{CC}_{9} \mathrm{H}_{4} \mathrm{RN}(\mathrm{Ar})\right\}\left(\mathrm{PR}_{3}\right)_{2} \mathrm{Cp}$, by attack of the terminal carbon of the butatrienylidene ligand at the imine carbon, followed by $\mathrm{C}-\mathrm{C}$ bond formation between the ortho carbon of the N-aryl group and C_{γ} of the unsaturated carbene, or 1-azabuta-1,3-dienyl complexes, formed by cycloaddition of the $\mathrm{N}=\mathrm{CH}$ group to $\mathrm{C}_{\gamma}=\mathrm{C}_{\delta}$ of the carbene, followed by opening of the resulting four-membered ring. Some product dependence on the nature of the substituents in the N - and C-aryl groups is found. The N atoms in the products are strongly basic, being readily protonated, methylated or aurated. The molecular structures of nine complexes are reported, together with that of a new modification of $\mathrm{RuCl}\left\{\mathrm{P}(\mathrm{OMe})_{3}\right\}_{2} \mathrm{Cp}$. © 1999 Elsevier Science S.A. All rights reserved.

Keywords: Ruthenium; Butatrienylidene; 4-Ethynylquinoline; 1-Azabuta-1,3-dienes

1. Introduction

The synthesis and chemistry of transition metal complexes containing unsaturated carbenes, $\mathrm{M}\left\{=\mathrm{C}(=\mathrm{C})_{n}=\right.$ $\left.\mathrm{CR}_{2}\right\} \mathrm{L}_{n}$, continues to attract attention. Whereas the reactions of the first member of the series (vinylidenes, $n=0$) have been explored in some detail [1], those of the next higher members of the series, allenylidenes ($n=1$) and butatrienylidenes $(n=2)$, have not received so much attention [2]. Theoretical and experimental evidence points to the alternating electron deficiency and richness of the carbons of the unsaturated chain, resulting in specific reactivities towards nucleophiles (at odd-numbered carbons) and electrophiles (at even-numbered carbons) [3]. Much of the chemistry of vinylidene complexes has utilised metal-ligand combi-

[^0]nations that are both electron rich and also have sterically large ligands, such as PPh_{3}, which give a measure of steric protection to C_{α}, allowing a rich chemistry derived from the nucleophilic properties of these complexes. Examples of reaction sequences involving both C_{α} and C_{β} are rare. The steric protection does not extend beyond C_{β}, so that allenylidenes $(n=1)$ and higher members might be expected to enter into cycloaddition reactions with suitable reagents. This has been demonstrated recently with $\left[\mathrm{Ru}\left(=\mathrm{C}=\mathrm{C}=\mathrm{CPh}_{2}\right)\right.$ $\left.(\mathrm{CO})\left(\mathrm{Prr}_{3}^{i}\right) \mathrm{Cp}\right]^{+}$to give tetrahydronaphthofuranyl [4] and pyrazolopyrazolyl [5] derivatives, and with cycloaddition of alkynyl complexes to Group 6 diarylallenylidenes to give cyclobutenylidene complexes [6].
Recently, we described the reaction between buta1,3 -diyne and $\left[\mathrm{Ru}(\mathrm{THF})\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cp}\right]^{+}$, which at low temperatures affords an intermediate which, on the basis of its synthesis and chemistry, appears to be the cationic butatrienylidene complex $\left[\mathrm{Ru}\left(=\mathrm{C}=\mathrm{C}=\mathrm{C}=\mathrm{CH}_{2}\right)\right.$ $\left.\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cp}\right]^{+}$or a close relative [7]. Although we have not yet managed to characterise this
species fully, we have observed and briefly reported its reactions with imines to give products containing quinoline or azabutadiene moieties, the formation of which suggests that a sequence of electrophilic and nucleophilic attack of the complex on the imine has occurred [8]. This paper describes these reactions in more detail, together with the crystal and molecular structures of several of the products.

2. Results and discussion

The formation of the cation $\left[\mathrm{Ru}\left(=\mathrm{C}=\mathrm{C}=\mathrm{C}=\mathrm{CH}_{2}\right)\right.$ $\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cp}{ }^{+}$has been described before [7]. In the present work we have used this complex and the related derivative containing $\mathrm{P}(\mathrm{OMe})_{3}$ ligands, which was prepared similarly. The latter is also very reactive, but was chosen to simplify the NMR assignments of the products. The ${ }^{1} \mathrm{H}$-NMR spectra of these complexes contain characteristic doublets for the $\mathrm{P}(\mathrm{OMe})_{3}$ groups (separation ca. 12 Hz), while the region above $\delta 5$ contains only aromatic protons for the ligands derived from the imines. The Cp groups in the $\mathrm{Ru}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cp}$ complexes give rise to singlet resonances between $\delta 4.20$ and 4.76, values tending to higher fields for the azabutadiene derivatives. In the $\mathrm{P}(\mathrm{OMe})_{3}$ complexes, the Cp resonances are found between $\delta 4.90$ and 5.10 ; the quinolines show $\mathrm{H}-\mathrm{P}$ coupling of ca. 1 Hz , whereas most of the azabutadienes give only singlet resonances. As described earlier, we have carried out these reactions by generating the butatrienylidene complex in situ, from the reaction of buta-1,3-diyne with $\left[\mathrm{Ru}(\mathrm{THF})(\mathrm{L})_{2} \mathrm{Cp}\right]^{+}$ $\left[\mathrm{L}=\mathrm{PPh}_{3}\right.$ or $\left.\mathrm{P}(\mathrm{OMe})_{3}\right]$, the latter obtained by addition of AgPF_{6} to a solution of $\mathrm{RuCl}(\mathrm{L})_{2} \mathrm{Cp}$ in THF. Experimentally, it is convenient to add a solution of buta-1,3diyne in THF to a mixture of the cation and the imine in the same solvent kept between -100 and $-78^{\circ} \mathrm{C}$. After warming to r.t., the now orange-red solution is treated with KOBu^{t} and worked up to give the neutral products, which form yellow-orange crystals.

The reactions may proceed to give either of two products, namely the substituted 4 -ethynylquinoline or a 1 -azabuta-1,3-dien-2-yl complex. The identities of these were originally established by the X-ray structural determinations but, as described in detail below, it has also been possible to distinguish between them using NMR spectroscopy.

2.1. Quinoline derivatives

The reaction of $\left[\mathrm{Ru}\left(=\mathrm{C}=\mathrm{C}=\mathrm{C}=\mathrm{CH}_{2}\right)\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cp}\right]^{+}$with benzylideneaniline proceeded to give the orange complex 1 in moderate yield. Consideration of the stoichiometry of the reaction, in which a total of $\left(2 \mathrm{H}+\mathrm{H}^{+}\right)$is lost from the combination $\left(\mathrm{C}_{4} \mathrm{H}_{2}^{+}+\right.$ $\mathrm{PhCH}=\mathrm{NPh}$), suggested that the imine also acts as a
hydrogen-acceptor in the reaction. This was confirmed by the identification of benzylaniline as also being formed in the reaction. Consequently, improved (but not high) yields were obtained when two equivalents of imine were employed in this and subsequent reactions (see Scheme 1). Difficulties in isolation of this and related complexes arose from their extremely basic nature, which led to their ready protonation, even by water. This was accompanied by a colour change from orange to claret red and was particularly evident during attempted purification by TLC, for example. In part, this is overcome by addition of KOBu^{t} to the reaction mixture before work-up. The spectroscopic properties of the complexes are summarised in Table 1.
Assignments of the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra are based on $\mathrm{H}, \mathrm{H}-\mathrm{COSY}$ and homonuclear decoupling experiments, and are also listed in Table 1 (Scheme 2). The preferred solvent for these studies was $\mathrm{C}_{6} \mathrm{D}_{6}$. Resonances of hydrogen atoms that are on carbons adjacent to N are generally somewhat broadened, which helps in the assignments. Similarly, H atoms close to NO_{2} groups are found at relatively low field. In the benzoquinoline derivative 10, the large downfield shift of $\mathrm{H}_{5}(\delta 12.25)$ is probably the result of its close proximity to the $\mathrm{C} \equiv \mathrm{C}$ triple bond.
Complex 1 was identified as the 4 -substituted quinoline by an X-ray study (see below). Its formulation as a deprotonated $1 / 1$ adduct between the imine and the butatrienylidene cation was indicated by analysis and its mass spectrum, which showed a parent ion at m / z 919. In the IR spectrum, a band at $2048 \mathrm{~cm}^{-1}$ was assigned to a $v(\mathrm{C} \equiv \mathrm{C})$ absorption, not unexpected if addition of a nucleophile to C_{γ} had occurred. After the structure was established, detailed examination of the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum, using COSY and other decoupling techniques, allowed assignment of most of the resonances as detailed in Table 1.
We have briefly examined the influence of a variety of substituents on the course of this reaction. Similar quinoline complexes were obtained when H or electrondonating substituents were present on the N-aryl group, or H or electron-withdrawing groups were in the C-aryl group. Thus the reactions of $\mathrm{RC}_{6} \mathrm{H}_{4} \mathrm{~N}=\mathrm{CHC}_{6} \mathrm{H}_{4} \mathrm{R}^{\prime}$ ($\mathrm{R}=\mathrm{Me}, \quad \mathrm{R}^{\prime}=\mathrm{H} ; \quad \mathrm{R}=\mathrm{H}, \quad \mathrm{R}^{\prime}=\mathrm{NO}_{2}-4 ; \quad \mathrm{R}=\mathrm{OMe}-4$, $\mathrm{R}^{\prime}=\mathrm{NO}_{2}-4$) afforded complexes 2, 3 and 7, respectively. Using the $\mathrm{P}(\mathrm{OMe})_{3}$ precursor, we made similar derivatives from imines with $\mathrm{R}=\mathrm{H}, \mathrm{R}^{\prime}=\mathrm{NO}_{2}-4$ (4), $\mathrm{CO}_{2} \mathrm{Me}$ (6) and $\mathrm{R}=\mathrm{OMe}-4, \mathrm{R}^{\prime}=\mathrm{NO}_{2}-4$ (8). All complexes were readily identified as the substituted ethynylquinolines by elemental analysis, mass spectrometry and analyses of their ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra. In addition, X-ray structural studies were carried out on 2, 3, 6 and 8 (see below).
The product from $3-\mathrm{ClC}_{6} \mathrm{H}_{4} \mathrm{~N}=\mathrm{CHPh}$ and the PPh_{3} complex was shown to be the corresponding quinoline

9, but the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum showed that it was formed as a $4 / 1$ mixture of isomers. Two Cp singlet resonances at $\delta 4.67$ (major) and 4.58 (minor) were present and detailed analysis allowed the structural assignments shown in Scheme 1.

Use of imines containing naphthyl groups was investigated as a possible route to tricyclic systems. Cyclisation to the naphthyl group occurred with $\left(2-\mathrm{C}_{10} \mathrm{H}_{7}\right) \mathrm{N}=\mathrm{CHPh}$, when the orange benzo $[h]$ quinoline complex 10 was obtained. The mass spectrum contained M^{+}at $m / z 969$ and detailed examination of the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum enabled assignment of individual resonances to the eight protons of the benzoquinoline ligand as shown. In particular, there is a low-field resonance at $\delta 12.25$ which we suggest arises from $\mathrm{H}(13)$, which from the X-ray structural study is found in close proximity to the $\mathrm{C} \equiv \mathrm{C}$ triple bond $[\mathrm{H}(13) \cdots \mathrm{C}(13)$ separation is $2.3 \AA$].

2.2. 1-Azabuta-1,3-dienyl complexes

In contrast to the product found with the PPh_{3} complex, the reaction between $\left[\mathrm{Ru}(\mathrm{THF})\left\{\mathrm{P}(\mathrm{OMe})_{3}\right\}_{2^{-}}\right.$ $\mathrm{Cp}]^{+}$, buta-1,3-diyne and $\mathrm{PhCH}=\mathrm{NPh}$ afforded the cor-
responding azabuta-1,3-dienyl derivative, 11 (Scheme 3). This was readily identified from its ES mass spectrum, which contained $[\mathrm{M}+\mathrm{H}]^{+}$at $m / z 646$, and from its ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum, in which a resonance assigned to the vinylic proton H_{4} at $\delta 7.71$ is characterised by a 15.8 Hz coupling to H_{3} trans to it (the H_{3} resonance is contained within the multiplet at $\delta 7.02-7.40$). The $v(\mathrm{C} \equiv \mathrm{C})$ absorption is found at $2051 \mathrm{~cm}^{-1}$.
Similarly, complexes 12, 14, 16-19 and 21 were obtained from reactions between $\left[\mathrm{Ru}\left(=\mathrm{C}=\mathrm{C}=\mathrm{C}=\mathrm{CH}_{2}\right)\right.$ $\left.\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cp}\right]^{+}$and $\mathrm{RC}_{6} \mathrm{H}_{4} \mathrm{~N}=\mathrm{CHC}_{6} \mathrm{H}_{4} \mathrm{R}^{\prime}\left(\mathrm{R}=\mathrm{R}^{\prime}=\mathrm{Me}-4\right.$, OMe-4; $\quad \mathrm{R}=\mathrm{NO}_{2}-3, \quad \mathrm{NO}_{2}-4, \quad \mathrm{R}^{\prime}=\mathrm{H} ; \quad \mathrm{R}=\mathrm{H}, \quad \mathrm{R}^{\prime}=$ $\left.\mathrm{CO}_{2} \mathrm{Me}-4 ; \quad \mathrm{R}=\mathrm{NO}_{2}-4, \quad \mathrm{R}^{\prime}=\mathrm{CO}_{2} \mathrm{Me}-4\right)$, respectively. The $\mathrm{P}(\mathrm{OMe})_{3}$ analogues 11, 13, 15 and 20 (with $\mathrm{R}=$ $\left.\mathrm{R}^{\prime}=\mathrm{H}, \quad \mathrm{Me}-4, \quad \mathrm{OMe}-4 ; \quad \mathrm{R}=\mathrm{NO}_{2}-4, \quad \mathrm{R}^{\prime}=\mathrm{CO}_{2} \mathrm{Me}-4\right)$ were also prepared. The distinction from the quinoline structure is readily made, the two trans vinylic protons giving characteristic doublets with $J(\mathrm{HH}) \mathrm{ca} .16 \mathrm{~Hz}$.

It is notable that similar complexes were obtained in both series $\left[\mathrm{PPh}_{3}\right.$ and $\left.\mathrm{P}(\mathrm{OMe})_{3}\right]$ from the bis-tolyl and bis-anisyl imines, $4-\mathrm{RC}_{6} \mathrm{H}_{4} \mathrm{~N}=\mathrm{CHC}_{6} \mathrm{H}_{4} \mathrm{R}-4 \quad(\mathrm{R}=\mathrm{Me}$, $\mathrm{OMe})$. These complexes ($\mathbf{1 2 - 1 5)}$ were identified from their ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra and the molecular structure of 15 was confirmed by a single-crystal X-ray study. How-

Scheme 1.

Table 1
Analytical and spectroscopic data

Spectroscopic data ${ }^{\text {a }}$
$14-\left\{\mathrm{Cp}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Ru}(\mathrm{C} \equiv \mathrm{C})\right\}-2-\mathrm{PhC}_{9} \mathrm{H}_{5} \mathrm{~N}$ yellow; m.p. $136-138^{\circ} \mathrm{C}$ (dec.) Anal. Found: C, 73.99 ; H, 5.18; N, 1.51. $\mathrm{C}_{58} \mathrm{H}_{45} \mathrm{NP}_{2} \mathrm{Ru} \cdot 0.2 \mathrm{CH}_{2} \mathrm{Cl}_{2} \cdot 0.5 \mathrm{Et}_{2} \mathrm{O}$ calc.: C , 74.31 ; $\mathrm{H}, 5.22 ; \mathrm{N}, 1.44 ; \mathrm{M}$ (solvent-free), 919 (both solvate molecules were detected by NMR)

2 4- $\left\{\mathrm{Cp}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Ru}(\mathrm{C} \equiv \mathrm{C})\right\}-6-\mathrm{Me}-2-\mathrm{PhC}_{9} \mathrm{H}_{4} \mathrm{~N}$ bright yellow; m.p. $191-195^{\circ} \mathrm{C}$ Anal. Found: C, $74.50 ; \mathrm{H}, 5.00$; N, 1.48. $\mathrm{C}_{59} \mathrm{H}_{47} \mathrm{NP}_{2} \mathrm{Ru}$ calc.: C, $75.97 ; \mathrm{H}, 5.04 ; \mathrm{N}, 1.50$; M, 933
3 4- $\left\{\mathrm{Cp}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Ru}(\mathrm{C} \equiv \mathrm{C})\right\}-2-\left(4-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4}\right) \mathrm{C}_{9} \mathrm{H}_{5} \mathrm{~N}$ yellow; m.p. $208-210^{\circ} \mathrm{C}$ (dec.) Anal. Found: C, 71.85 ; H, 4.63; N, 2.86. $\mathrm{C}_{58} \mathrm{H}_{44} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{P}_{2} \mathrm{Ru}$ calc.: C, 72.26; H, 4.60; N, 2.91; M, 964

4 4- $\left\{\mathrm{Cp}\left[\mathrm{P}(\mathrm{OMe})_{3}\right]_{2} \mathrm{Ru}(\mathrm{C} \equiv \mathrm{C})\right\}-2-\left(4-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4}\right) \mathrm{C}_{9} \mathrm{H}_{5} \mathrm{~N}$ orange; m.p. $129-131^{\circ} \mathrm{C}$ Anal. Found: C, $47.22 ; \mathrm{H}$, 4.56; $\mathrm{N}, 4.07 . \mathrm{C}_{28} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{8} \mathrm{P}_{2} \mathrm{Ru}$ calc.: $\mathrm{C}, 48.90 ; \mathrm{H}$, 4.56; N, 4.07; M, 688
$54-\left\{\mathrm{Cp}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Ru}(\mathrm{C} \equiv \mathrm{C})\right\}-2-\left(3-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4}\right) \mathrm{C}_{9} \mathrm{H}_{5} \mathrm{~N}$ yellow: m.p. $202-204^{\circ} \mathrm{C}$ (dec.) Anal. Found: C, 71.09; H, 4.57; $\mathrm{N}, 2.86 . \mathrm{C}_{58} \mathrm{H}_{44} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{P}_{2} \mathrm{Ru} .0 .2 \mathrm{CH}_{2} \mathrm{Cl}_{2}$ calc.: C, 71.26; $\mathrm{H}, 4.56 ; \mathrm{N}, 2.86 ; \mathrm{M}$ (solvent-free), $964\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ detected in NMR)
$64-\left\{\mathrm{Cp}\left[\mathrm{P}(\mathrm{OMe})_{3}\right]_{2} \mathrm{Ru}(\mathrm{C} \equiv \mathrm{C})\right\}-2-\left(4-\mathrm{MeO}_{2} \mathrm{CC}_{6} \mathrm{H}_{4}\right) \mathrm{C}_{9} \mathrm{H}_{5} \mathrm{~N}$ yellow; m.p. $155-156^{\circ} \mathrm{C}$ Anal. Found: C, 51.53; H, 5.04; N, 1.98. $\mathrm{C}_{30} \mathrm{H}_{35} \mathrm{NO}_{8} \mathrm{P}_{2} \mathrm{Ru}$ calc.: $\mathrm{C}, 51.43 ; \mathrm{H}, 5.04$; N, 2.00; M, 701
$74-\left\{\mathrm{Cp}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Ru}(\mathrm{C} \equiv \mathrm{C})\right\}-6-\mathrm{MeO}-2-\left(4-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4}\right) \mathrm{C}_{9} \mathrm{H}_{4} \mathrm{~N}$ yellow; m.p. $220-222^{\circ} \mathrm{C}$ (dec.) Anal. Found: C, 70.45; $\mathrm{H}, 4.56$; N, 2.87. $\mathrm{C}_{59} \mathrm{H}_{46} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{P}_{2} \mathrm{Ru} .0 .2 \mathrm{CH}_{2} \mathrm{Cl}_{2}$ calc.: C, $70.33 ; \mathrm{H}, 4.63 ; \mathrm{N}, 2.77 ; \mathrm{M}$ (solvent-free), $994\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ detected in NMR)
$84-\left\{\mathrm{Cp}\left[\mathrm{P}(\mathrm{OMe})_{3}\right]_{2} \mathrm{Ru}(\mathrm{C} \equiv \mathrm{C})\right\}-6-\mathrm{MeO}-2-\left(4-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4}\right)-$ $\mathrm{C}_{9} \mathrm{H}_{4} \mathrm{~N}$ orange; m.p. $115-116^{\circ} \mathrm{C}$ Anal. Found: C, 48.38; $\mathrm{H}, 4.73$; $\mathrm{N}, 3.89 . \mathrm{C}_{29} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{O}_{9} \mathrm{P}_{2} \mathrm{Ru}$ calc.: $\mathrm{C}, 48.53$; H , 4.77; N, 3.90; M, 740

9 4- $\left\{\mathrm{Cp}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Ru}(\mathrm{C} \equiv \mathrm{C})\right\}-(5 / 7)-\mathrm{Cl}-2-\mathrm{PhC}_{9} \mathrm{H}_{4} \mathrm{~N}$ yellow; m.p. $154-156^{\circ} \mathrm{C}$ (dec.) Anal. Found: C, 70.91; H, 4.71; $\mathrm{N}, 1.43 . \mathrm{C}_{58} \mathrm{H}_{44} \mathrm{ClNP}_{2}$ Ru. $0.4 \mathrm{CH}_{2} \mathrm{Cl}_{2} .0 .2 \mathrm{Et}_{2} \mathrm{O}$ calc.: C , $70.94 ; \mathrm{H}, 4.71 ; \mathrm{N}, 1.40 ; \mathrm{M}, 953$ (both solvate molecules found in NMR)
$104-\left\{\mathrm{Cp}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Ru}(\mathrm{C} \equiv \mathrm{C})\right\}-2-\mathrm{PhC}_{13} \mathrm{H}_{8} \mathrm{~N}$ yellow; m.p. $133-134^{\circ} \mathrm{C}$ (dec.) Anal. Found: C, 76.88; H, 5.32; N, 1.46. $\mathrm{C}_{62} \mathrm{H}_{47} \mathrm{NP}_{2} \mathrm{Ru}$ calc.: C, $76.84 ; \mathrm{H}, 4.89 ; \mathrm{N}, 1.45$; M, 969

IR: $v(\mathrm{C} \equiv \mathrm{C}) 2048 \mathrm{~s}{ }^{1} \mathrm{H}-\mathrm{NMR}: 4.60(\mathrm{~s}, 5 \mathrm{H}, \mathrm{Cp}), 7.00\left(\mathrm{~m}, 18 \mathrm{H}, \mathrm{H}_{\mathrm{m}}+\mathrm{H}_{\mathrm{p}}\right.$ of $\left.\mathrm{PPh}_{3}\right)$, $7.29\left[\mathrm{t}, J(\mathrm{HH}) 7.5,1 \mathrm{H}, \mathrm{H}_{11}\right], 7.44\left[\mathrm{t}, J(\mathrm{HH}) 7.5,2 \mathrm{H}, \mathrm{H}_{10}\right], 7.49[\mathrm{t}, J(\mathrm{HH}) 7.5$, $1 \mathrm{H}, \mathrm{H}_{6}$ or H_{7}], $7.62\left[\mathrm{t}, J(\mathrm{HH}) 7.5,1 \mathrm{H}, \mathrm{H}_{7}\right.$ or $\left.\mathrm{H}_{6}\right], 7.78\left(\mathrm{~m}, 12 \mathrm{H}, \mathrm{H}_{\mathrm{o}}\right.$ of $\left.\mathrm{PPh}_{3}\right)$, $8.05\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{3}\right), 8.59\left[\mathrm{~d}, J(\mathrm{HH}) 7.5,3 \mathrm{H}, \mathrm{H}_{9}+\mathrm{H}_{5}\right.$ or $\left.\mathrm{H}_{8}\right], 9.03[\mathrm{~d}, J(\mathrm{HH}) 7.5$, $1 \mathrm{H}, \mathrm{H}_{8}$ or H_{5}] ${ }^{13} \mathrm{C}-\mathrm{NMR}: 85.7$ (s, Cp), 112.8 (s), 116.1 (s), 119.7 (s), 128.0 (s), 124.9 (s$), 125.9$ (s$), 128.7$ (t), 129.4 (s$), 131.4$ (s$), 133.4$ (t), 136.6 (s$), 138.5(\mathrm{~m})$, 140.7 (s), 148.6 (s), 157.0 (s), 160.4 (s) ES MS: $919, \mathrm{M}^{+} ; 657$, $\left[\mathrm{M}-\mathrm{PPh}_{3}\right]^{+}$

IR: $v(\mathrm{C} \equiv \mathrm{C}) 2051 \mathrm{~s}{ }^{1} \mathrm{H}-\mathrm{NMR}: 2.36(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}), 4.33(\mathrm{~s}, 5 \mathrm{H}, \mathrm{Cp}), 7.1-8.3(\mathrm{~m}$, 39 H , aromatic H) FAB MS: 933, $\mathrm{M}^{+} ; 671,\left[\mathrm{M}-\mathrm{PPh}_{3}\right]^{+} ; 428$,
$\left[\mathrm{Ru}\left(\mathrm{PPh}_{3}\right)\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]^{+}$

IR: $v(\mathrm{C} \equiv \mathrm{C}) 2046 \mathrm{~s}, v(\mathrm{NO}) 1511 \mathrm{~s}, 1343 \mathrm{~s}, v(\mathrm{CN}) 846 \mathrm{~m}{ }^{1} \mathrm{H}-\mathrm{NMR}: 4.38(\mathrm{~s}, 5 \mathrm{H}, \mathrm{Cp})$, $7.03\left[\mathrm{t}, J(\mathrm{HH}) 7,12 \mathrm{H}, \mathrm{H}_{\mathrm{m}}\right.$ of $\left.\mathrm{PPh}_{3}\right], 7.16\left[\mathrm{t}, J(\mathrm{HH}) 7,6 \mathrm{H}, \mathrm{H}_{\mathrm{p}}\right.$ of $\left.\mathrm{PPh}_{3}\right], 7.30(\mathrm{~s}$, $\left.1 \mathrm{H}, \mathrm{H}_{3}\right), 7.35\left[\mathrm{t}, J(\mathrm{HH}) 8,1 \mathrm{H}, \mathrm{H}_{6}\right], 7.40\left(\mathrm{~m}, 12 \mathrm{H}, \mathrm{H}_{\mathrm{o}}\right.$ of $\left.\mathrm{PPh}_{3}\right), 7.59[\mathrm{t}, J(\mathrm{HH})$ $\left.8,1 \mathrm{H}, \mathrm{H}_{7}\right], 7.99\left[\mathrm{~d}, J(\mathrm{HH}) 8,1 \mathrm{H}, \mathrm{H}_{5}\right], 8.16\left[\mathrm{~d}, J(\mathrm{HH}) 9,2 \mathrm{H}, \mathrm{H}_{9}\right], 8.28$ [d, $\left.J(\mathrm{HH}) 9,2 \mathrm{H}, \mathrm{H}_{10}\right], 8.40\left[\mathrm{~d}, J(\mathrm{HH}) 8,1 \mathrm{H}, \mathrm{H}_{8}\right]$ FAB MS: $965,[\mathrm{M}+\mathrm{H}]^{+} ; 702$, $\left[\mathrm{M}-\mathrm{PPh}_{3}\right]^{+} ; 625,\left[\mathrm{M}-\mathrm{PPh}_{3}-\mathrm{Ph}\right]^{+} ; 429,\left[\mathrm{Ru}\left(\mathrm{PPh}_{3}\right)\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]^{+}$

IR: $v(\mathrm{C} \equiv \mathrm{C}) 2062 \mathrm{~s}, v(\mathrm{NO}) 1525 \mathrm{~s}, 1347 \mathrm{~s}, v(\mathrm{PO}) 1024 \mathrm{vs}(\mathrm{br}){ }^{1} \mathrm{H}-\mathrm{NMR}: 3.68[\mathrm{t}$, $J(\mathrm{HP}) 11.7,18 \mathrm{H}, \mathrm{OMe}, 5.09[\mathrm{t}, J(\mathrm{HP}) 0.9,5 \mathrm{H}, \mathrm{Cp}], 7.45[\mathrm{t}, J(\mathrm{HH}) 8.1,1 \mathrm{H}$, $\left.\mathrm{H}_{7}\right], 7.61\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{3}\right), 7.64\left[\mathrm{t}, J(\mathrm{HH}) 8.4,1 \mathrm{H}, \mathrm{H}_{6}\right], 8.03\left[\mathrm{~d}, J(\mathrm{HH}) 9.0,1 \mathrm{H}, \mathrm{H}_{5}\right]$, $8.25,8.33\left[2 \times \mathrm{d}, J(\mathrm{HH}) 9.0,4 \mathrm{H}, \mathrm{H}_{9,10}\right], 8.58\left[\mathrm{~d}, J(\mathrm{HH}) 8.1,1 \mathrm{H}, \mathrm{H}_{8}\right] \mathrm{ES}$ MS: 689, $[\mathrm{M}+\mathrm{H}]^{+}$
IR: $v(\mathrm{C} \equiv \mathrm{C}) 2054 \mathrm{~s}, v(\mathrm{NO}) 1529 \mathrm{~s}, 1350 \mathrm{~s}, v(\mathrm{CN}) 808 \mathrm{~m}{ }^{1} \mathrm{H}-\mathrm{NMR}: 4.45(\mathrm{~s}, 5 \mathrm{H}, \mathrm{Cp})$, $7.03\left[\mathrm{t}, J(\mathrm{HH}) 7,13 \mathrm{H}, \mathrm{H}_{\mathrm{m}}\right.$ of $\left.\mathrm{PPh}_{3}+\mathrm{H}_{11}\right], 7.10\left[\mathrm{t}, J(\mathrm{HH}) 7,6 \mathrm{H}, \mathrm{H}_{\mathrm{p}}\right.$ of $\left.\mathrm{PPh}_{3}\right]$, $7.54\left[\mathrm{td}, J(\mathrm{HH}) 8,1.5,1 \mathrm{H}, \mathrm{H}_{6}\right], 7.63\left[\mathrm{td}, J(\mathrm{HH}) 8,1.5,1 \mathrm{H}, \mathrm{H}_{7}\right], 7.75(\mathrm{~m}, 12 \mathrm{H}$, H_{o} of $\left.\mathrm{PPh}_{3}\right), 7.89\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{3}\right), 7.96\left[\mathrm{dt}, J(\mathrm{HH}) 8,1.5,1 \mathrm{H}, \mathrm{H}_{9}\right], 8.52[\mathrm{~d}, J(\mathrm{HH})$ $\left.8,1 \mathrm{H}, \mathrm{H}_{8}\right], 8.81\left[\mathrm{dt}, J(\mathrm{HH}) 8,1.5,1 \mathrm{H}, \mathrm{H}_{10}\right], 9.05\left[\mathrm{t}, J(\mathrm{HH}) 1.5,1 \mathrm{H}, \mathrm{H}_{13}\right], 9.15$ $\left[\mathrm{dd}, J(\mathrm{HH}) 8,1.5,1 \mathrm{H}, \mathrm{H}_{5}\right]$ ES MS: $965,[\mathrm{M}+\mathrm{H}]^{+} ; 703,\left[\mathrm{M}+\mathrm{H}-\mathrm{PPh}_{3}\right]^{+}$
IR: $v(\mathrm{C} \equiv \mathrm{C}) 2064 \mathrm{~s}, v(\mathrm{CO}) 1719 \mathrm{~s}, v(\mathrm{PO}) 1023 \mathrm{vs}(\mathrm{br}){ }^{1} \mathrm{H}-\mathrm{NMR}: 3.69[\mathrm{t}, J(\mathrm{HP}) 12.0$, $18 \mathrm{H}, \mathrm{OMe}$, $3.95\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{Me}\right), 5.10(\mathrm{~s}, 5 \mathrm{H}, \mathrm{Cp}), 7.43\left[\mathrm{t}, J(\mathrm{HH}) 7.2,1 \mathrm{H}, \mathrm{H}_{7}\right]$, $7.62\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{3}\right), 7.63\left[\mathrm{t}, J(\mathrm{HH}) 7.2,1 \mathrm{H}, \mathrm{H}_{6}\right], 8.05\left[\mathrm{~d}, J(\mathrm{HH}) 8.0,1 \mathrm{H}, \mathrm{H}_{5}\right], 8.16$ $\left[2 \times \mathrm{d}, J(\mathrm{HH}) 8.4,4,4 \mathrm{H}, \mathrm{H}_{9,10}\right], 8.51\left[\mathrm{~d}, J(\mathrm{HH}) 8.4,1 \mathrm{H}, \mathrm{H}_{8}\right]$ ES MS: 702, $[\mathrm{M}+\mathrm{H}]^{+}$
IR: $v(\mathrm{C} \equiv \mathrm{C}) 2037 \mathrm{~s}, v(\mathrm{NO}) 1513 \mathrm{~s}, 1339 \mathrm{~s}, v(\mathrm{CN}) 853 \mathrm{~m}{ }^{1} \mathrm{H}-\mathrm{NMR}: 3.43(\mathrm{~s}, 3 \mathrm{H}$, OMe), $4.42(\mathrm{~s}, 5 \mathrm{H}, \mathrm{Cp}), 7.08\left[\mathrm{t}, J(\mathrm{HH}) 7,12 \mathrm{H}, \mathrm{H}_{\mathrm{m}}\right.$ of $\left.\mathrm{PPh}_{3}\right], 7.21[\mathrm{t}, J(\mathrm{HH}) 7$,
$6 \mathrm{H}, \mathrm{H}_{\mathrm{p}}$ of PPh_{3}], $7.29\left[\mathrm{dd}, J(\mathrm{HH}) 9,3,1 \mathrm{H}, \mathrm{H}_{7}\right], 7.40\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{3}\right), 7.49(\mathrm{~m}, 12 \mathrm{H}$, H_{o} of $\left.\mathrm{PPh}_{3}\right), 7.82\left[\mathrm{~d}, J(\mathrm{HH}) 3,1 \mathrm{H}, \mathrm{H}_{5}\right], 7.96\left[\mathrm{~d}, J(\mathrm{HH}) 9,1 \mathrm{H}, \mathrm{H}_{8}\right], 8.22$ [d, $\left.J(\mathrm{HH}) 9,2 \mathrm{H}, \mathrm{H}_{9}\right], 8.35\left[\mathrm{~d}, J(\mathrm{HH}) 9,2 \mathrm{H}, \mathrm{H}_{10}\right] \mathrm{ES}$ MS: 994, $\mathrm{M}^{+} ; 731$, $\left[\mathrm{M}-\mathrm{H}-\mathrm{PPh}_{3}\right]^{+}$

IR: $v(\mathrm{C} \equiv \mathrm{C}) 2061 \mathrm{~s}, v(\mathrm{NO}) 1524 \mathrm{~s}, 1347 \mathrm{~s}, v(\mathrm{PO}) 1030 \mathrm{vs}(\mathrm{br}){ }^{1} \mathrm{H}-\mathrm{NMR}: 3.68[\mathrm{t}$, $J(\mathrm{HP}) 12.0,18 \mathrm{H}, \mathrm{OMe}, 3.96(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe}), 5.09(\mathrm{~s}, 5 \mathrm{H}, \mathrm{Cp}), 7.32$ [dd, $J(\mathrm{HH})$ $\left.9.3,2.7,1 \mathrm{H}, \mathrm{H}_{7}\right], 7.57\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{3}\right), 7.87\left[\mathrm{~d}, J(\mathrm{HH}) 3.0,1 \mathrm{H}, \mathrm{H}_{5}\right], 7.95[\mathrm{~d}, J(\mathrm{HH})$ $\left.9.3,1 \mathrm{H}, \mathrm{H}_{8}\right], 8.23,8.30\left[2 \mathrm{~d}, J(\mathrm{HH}) 9.3,4 \mathrm{H}, \mathrm{H}_{9,10}\right] \mathrm{ES}$ MS: $741,[\mathrm{M}+\mathrm{H}]^{+}$

IR: $v(\mathrm{C} \equiv \mathrm{C}) 2039 \mathrm{~s}{ }^{1} \mathrm{H}-\mathrm{NMR}:(9 \mathrm{a}, \sim 80 \%) 4.67(\mathrm{~s}, 5 \mathrm{H}, \mathrm{Cp}), 7.01^{*}\left(\mathrm{~m}, 18 \mathrm{H}, \mathrm{H}_{\mathrm{m}}\right.$ and H_{p} of PPh_{3}), $7.20\left[\mathrm{t}, J(\mathrm{HH}) 8,1 \mathrm{H}, \mathrm{H}_{7}\right], 7.31^{*}\left[\mathrm{t}, J(\mathrm{HH}) 7.5,1 \mathrm{H}, \mathrm{H}_{11}\right], 7.41$ $\left[\mathrm{t}, J(\mathrm{HH}) 7.5,2 \mathrm{H}, \mathrm{H}_{10}\right], 7.53\left[\mathrm{~d}, J(\mathrm{HH}) 8,1 \mathrm{H}, \mathrm{H}_{6}\right.$ or $\left.\mathrm{H}_{8}\right], 7.77 *\left(\mathrm{~m}, 12 \mathrm{H}, \mathrm{H}_{\mathrm{o}}\right.$ of $\left.\mathrm{PPh}_{3}\right), 7.88\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{3}\right), 8.35\left[\mathrm{~d}, J(\mathrm{HH}) 8,1 \mathrm{H}, \mathrm{H}_{8}\right.$ or H_{6}], $8.45[\mathrm{~d}, J(\mathrm{HH}) 7.5$, $\left.2 \mathrm{H}, \mathrm{H}_{9}\right](9 \mathrm{~b}, \sim 20 \%) 4.58(\mathrm{~s}, 5 \mathrm{H}, \mathrm{Cp}), 7.41\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{6}\right), 8.00\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{3}\right), 8.50$ $\left[\mathrm{d}, J(\mathrm{HH}) 7.5,2 \mathrm{H}, \mathrm{H}_{9}\right], 8.58\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{8}\right), 8.72\left[\mathrm{td}, J(\mathrm{HH}) 8,2 \mathrm{H}, \mathrm{H}_{5}\right] *$ resonances so indicated are common to both isomers FAB MS: 953, $\mathrm{M}^{+} ; 691$, $\left[\mathrm{M}-\mathrm{PPh}_{3}\right]^{+} ; 614,\left[\mathrm{M}-\mathrm{PPh}_{3}-\mathrm{Ph}\right]^{+} ; 429,\left[\mathrm{M}-2 \mathrm{PPh}_{3}\right]^{+}$or $\left[\mathrm{Ru}\left(\mathrm{PPh}_{3}\right)\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]^{+}$

IR: $v(\mathrm{C} \equiv \mathrm{C}) 2038 \mathrm{~s}{ }^{1} \mathrm{H}-\mathrm{NMR}: 4.76(\mathrm{~s}, 5 \mathrm{H}, \mathrm{Cp}), 6.95\left(\mathrm{~m}, 18 \mathrm{H}, \mathrm{H}_{\mathrm{m}}\right.$ and H_{p} of $\left.\mathrm{PPh}_{3}\right), 7.35\left[\mathrm{t}, J(\mathrm{HH}) 7.5,1 \mathrm{H}, \mathrm{H}_{13}\right], 7.48\left[\mathrm{t}, J(\mathrm{HH}) 7.5,2 \mathrm{H}, \mathrm{H}_{12}\right], 7.65[\mathrm{t}, J(\mathrm{HH})$ $\left.7.5,1 \mathrm{H}, \mathrm{H}_{7}\right], 7.77\left(\mathrm{~m}, 12 \mathrm{H}, \mathrm{H}_{\mathrm{o}}\right.$ of $\left.\mathrm{PPh}_{3}\right), 7.87\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}_{6,8}+\mathrm{H}_{9}\right.$ or $\left.\mathrm{H}_{10}\right), 8.12$ $\left(\mathrm{s}, 1 \mathrm{H}, \mathrm{H}_{3}\right), 8.52\left[\mathrm{~d}, J(\mathrm{HH}) 9,1 \mathrm{H}, \mathrm{H}_{10}\right.$ or $\left.\mathrm{H}_{9}\right], 8.60\left[\mathrm{~d}, J(\mathrm{HH}) 7.5,2 \mathrm{H}, \mathrm{H}_{11}\right]$, $\left.12.25 \mathrm{~d}, J(\mathrm{HH}) 9,1 \mathrm{H}, \mathrm{H}_{5}\right] \mathrm{FAB} \mathrm{MS}: 969, \mathrm{M}^{+} ; 707,\left[\mathrm{M}-\mathrm{PPh}_{3}\right]^{+} ; 630$, $\left[\mathrm{M}-\mathrm{PPh}_{3}-\mathrm{Ph}\right]^{+} ; 429,\left[\mathrm{Ru}\left(\mathrm{PPh}_{3}\right)\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]^{+} ; 154,\left[\mathrm{Ph}_{2}\right]^{+}$

Table 1 (Continued)

Spectroscopic data ${ }^{\text {a }}$
IR: $v(\mathrm{C} \equiv \mathrm{C}) 2051 \mathrm{~s}, v(\mathrm{PO}) 1041 \mathrm{vs}(\mathrm{br}){ }^{1} \mathrm{H}-\mathrm{NMR}: 3.52[\mathrm{t}, J(\mathrm{HP}) 12.0,18 \mathrm{H}, \mathrm{OMe}]$, $4.89\left[\mathrm{t}, J(\mathrm{HP}) 1.0,5 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{5}\right], 7.02-7.40\left(\mathrm{~m}, 9 \mathrm{H}, \mathrm{H}_{1,2,3,5,7,8}\right), 7.51[\mathrm{~d}, J(\mathrm{HH}) 6.9$, $\left.2 \mathrm{H}, \mathrm{H}_{6}\right], 7.71\left[\mathrm{~d}, J(\mathrm{HH}) 15.8,1 \mathrm{H}, \mathrm{H}_{4}\right]$ ES MS: $646,[\mathrm{M}+\mathrm{H}]^{+}$

IR: $v(\mathrm{C} \equiv \mathrm{C}) 2022 \mathrm{~s}{ }^{1} \mathrm{H}-\mathrm{NMR}: 2.26$ ($\left.\mathrm{s}, 3 \mathrm{H}, \mathrm{Me}\right), 2.35$ ($\left.\mathrm{s}, 3 \mathrm{H}, \mathrm{Me}\right), 4.21$ (s, 5H, Cp), $6.90-7.43\left(\mathrm{~m}, 40 \mathrm{H}\right.$, aromatic H) ES MS: $950,[\mathrm{M}+\mathrm{H}]^{+} ; 688$,
$\left[\mathrm{Ru}\left(\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)-2 \mathrm{H}\right]^{+}$

IR: $v(\mathrm{C} \equiv \mathrm{C}) 2049 \mathrm{~s}, v(\mathrm{PO}) 1024 \mathrm{vs}(\mathrm{br}){ }^{1} \mathrm{H}-\mathrm{NMR}: 2.33,2.35(2 \times \mathrm{s}, 6 \mathrm{H}, \mathrm{Me}), 3.52[\mathrm{t}$, $J(\mathrm{HP}) 12.0,18 \mathrm{H}, \mathrm{OMe}, 4.91(\mathrm{~s}, 5 \mathrm{H}, \mathrm{Cp}), 7.01\left[\mathrm{~d}(\mathrm{br}), J(\mathrm{HH}) 15.9,1 \mathrm{H}, \mathrm{H}_{5}\right], 7.07$, $7.14\left[2 \times \mathrm{d}, J(\mathrm{HH}) 7.9,4 \mathrm{H}, \mathrm{H}_{2,3}\right], 7.16,7.40\left[2 \mathrm{~d}, J(\mathrm{HH}) 7.8,4 \mathrm{H}, \mathrm{H}_{6,7}\right], 7.67$ [d, $\left.J(\mathrm{HH}) 15.8,1 \mathrm{H}, \mathrm{H}_{4}\right]$ ES MS: $674,[\mathrm{M}+\mathrm{H}]^{+}$

IR: $v(\mathrm{C} \equiv \mathrm{C}) 2024 \mathrm{~s}{ }^{1} \mathrm{H}-\mathrm{NMR}: 3.74,3.77(2 \times \mathrm{s}, 6 \mathrm{H}, \mathrm{OMe}), 4.29(\mathrm{~s}, 5 \mathrm{H}, \mathrm{Cp}), 6.58$ $\left[\mathrm{d}, J(\mathrm{HH}) 9.0,2 \mathrm{H}, \mathrm{H}_{7}\right], 6.75\left[\mathrm{~d}, J(\mathrm{HH}) 8.8,2 \mathrm{H}, \mathrm{H}_{2}\right], 6.97\left[\mathrm{t}, J(\mathrm{HP}) 7,12 \mathrm{H}, \mathrm{H}_{\mathrm{m}}\right.$ of $\left.\mathrm{PPh}_{3}\right], 7.11\left[\mathrm{t}, J(\mathrm{HP}) 7,6 \mathrm{H}, \mathrm{H}_{\mathrm{p}}\right.$ of $\left.\mathrm{PPh}_{3}\right], 7.25\left(\mathrm{~m}, 17 \mathrm{H}, 12 o-\mathrm{H}\right.$ of $\mathrm{PPh}_{3}+\mathrm{H}_{2}$, H_{4} or $_{5}, \mathrm{H}_{6}$), $7.32\left[\mathrm{~d}, J(\mathrm{HH}) 16,1 \mathrm{H}, \mathrm{H}_{4}\right.$ or ${ }_{5}$] ES MS: $982,[\mathrm{M}+\mathrm{H}]^{+} ; 720$, $\left[\mathrm{M}+\mathrm{H}-\mathrm{PPh}_{3}\right]^{+}$

IR: $v(\mathrm{C} \equiv \mathrm{C}) 2046 \mathrm{~s}, v(\mathrm{PO}) 1033 \mathrm{vs}(\mathrm{br}){ }^{1} \mathrm{H}-\mathrm{NMR}: 3.53[\mathrm{t}, J(\mathrm{HP}) 12.0,18 \mathrm{H}$, P-OMe], 3.79, $3.80(2 \times \mathrm{s}, 6 \mathrm{H}, \mathrm{OMe}), 4.97(\mathrm{~s}, 5 \mathrm{H}, \mathrm{Cp}), 6.84,6.86[2 \times \mathrm{d}, J(\mathrm{HH})$ $\left.9.0,4 \mathrm{H}, \mathrm{H}_{2,3}\right], 7.14\left[\mathrm{~d}, J(\mathrm{HH}) 15.8,1 \mathrm{H}, \mathrm{H}_{5}\right], 7.50\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}_{6,7}\right), 7.67[\mathrm{~d}, J(\mathrm{HH})$ $\left.15.8,1 \mathrm{H}, \mathrm{H}_{4}\right]$ ES MS: $706,[\mathrm{M}+\mathrm{H}]^{+}$

IR: $v(\mathrm{C} \equiv \mathrm{C}) 2016 \mathrm{~s}, v(\mathrm{NO}) 1502 \mathrm{~s}, 1329 \mathrm{~s}, v(\mathrm{CN}) 846 \mathrm{~m}{ }^{1} \mathrm{H}-\mathrm{NMR}: 4.38(\mathrm{~s}, 5 \mathrm{H}, \mathrm{Cp})$, $6.97\left(\mathrm{~m}, 18 \mathrm{H}, \mathrm{H}_{\mathrm{m}}+\mathrm{H}_{\mathrm{p}}\right.$ of $\left.\mathrm{PPh}_{3}\right), 7.15\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}_{1}+\mathrm{H}_{2}\right.$ or $\left.\mathrm{H}_{3}\right), 7.30[\mathrm{~d}, J(\mathrm{HH}) 9$, $2 \mathrm{H}, \mathrm{H}_{6}$ or $\left.\mathrm{H}_{7}\right], 7.46\left(\mathrm{~m}, 14 \mathrm{H}, \mathrm{H}_{\mathrm{o}}\right.$ of $\mathrm{PPh}_{3}+\mathrm{H}_{3}$ or $\left.\mathrm{H}_{2}\right), 7.62\left[\mathrm{~d}, J(\mathrm{HH}) 16,1 \mathrm{H}, \mathrm{H}_{4}\right.$ or $\left.\mathrm{H}_{5}\right], 8.07$ [d, $J(\mathrm{HH}) 16,1 \mathrm{H}, \mathrm{H}_{5}$ or $\left.\mathrm{H}_{4}\right], 8.09\left[\mathrm{~d}, J(\mathrm{HH}) 9,2 \mathrm{H}, \mathrm{H}_{7}\right.$ or H_{6}] ES MS: 966, M^{+}; 703, $\left[\mathrm{M}-\mathrm{H}-\mathrm{PPh}_{3}\right]^{+}$

IR: $v(\mathrm{C} \equiv \mathrm{C}) 2048 \mathrm{~s}, v(\mathrm{NO}) 1530 \mathrm{~s}, 1351 \mathrm{~s}, v(\mathrm{CN}) 831 \mathrm{~m}{ }^{1} \mathrm{H}-\mathrm{NMR}: 4.56(\mathrm{~s}, 5 \mathrm{H}, \mathrm{Cp})$, $7.08\left[\mathrm{t}, J(\mathrm{HH}) 7.5,12 \mathrm{H}, \mathrm{H}_{\mathrm{m}}\right.$ of $\left.\mathrm{PPh}_{3}\right], 7.21\left[\mathrm{t}, J(\mathrm{HH}) 7.5,6 \mathrm{H}, \mathrm{H}_{\mathrm{p}}\right.$ of $\left.\mathrm{PPh}_{3}\right]$, $7.3-7.6\left(\mathrm{~m}, 12 \mathrm{H}, \mathrm{H}_{\mathrm{o}}\right.$ of $\left.\mathrm{PPh}_{3}+\mathrm{H}_{1}, \mathrm{H}_{2}, \mathrm{H}_{6}, \mathrm{H}_{8}, \mathrm{H}_{9}\right), 7.62\left[\mathrm{t}, J(\mathrm{HH}) 16,1 \mathrm{H}, \mathrm{H}_{4}\right.$ or $\left.\mathrm{H}_{5}\right], 8.04$ [d, $\left.J(\mathrm{HH}) 7.5,2 \mathrm{H}, \mathrm{H}_{3}\right], 8.21\left[\mathrm{~d}, J(\mathrm{HH}) 7.5,1 \mathrm{H}, \mathrm{H}_{7}\right.$ or H_{9}] FAB MS: 966, $\mathrm{M}^{+} ; 702,\left[\mathrm{M}-2 \mathrm{H}-\mathrm{PPh}_{3}\right]^{+} ; 427,\left[\mathrm{Ru}\left(\mathrm{PPh}_{3}\right)\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)-2 \mathrm{H}\right]^{+}$

IR: $v(\mathrm{C} \equiv \mathrm{C}) 2033 \mathrm{~s}, v(\mathrm{CO}) 1715 \mathrm{~s}{ }^{1} \mathrm{H}-\mathrm{NMR}: 3.88(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe}), 4.38(\mathrm{~s}, 5 \mathrm{H}, \mathrm{Cp})$, $6.71\left[\mathrm{~d}, J(\mathrm{HH}) 16.6,1 \mathrm{H}, \mathrm{H}_{4}\right.$ or $\left.\mathrm{H}_{5}\right], 7.02\left[\mathrm{t}, J(\mathrm{HP}) 7,12 \mathrm{H}, \mathrm{H}_{\mathrm{m}}\right.$ of $\left.\mathrm{PPh}_{3}\right], 7.19$ [t, $J(\mathrm{HP}) 7,6 \mathrm{H}, \mathrm{H}_{\mathrm{p}}$ of $\left.\mathrm{PPh}_{3}\right], 7.33-7.46\left(\mathrm{~m}, 13 \mathrm{H}, 12 o-\mathrm{H}\right.$ of $\mathrm{PPh}_{3}+\mathrm{H}_{4}$ or $\left.\mathrm{H}_{5}\right), 7.58$ [t, $\left.J(\mathrm{HH}) 8.6,1 \mathrm{H}, \mathrm{H}_{8}\right], 7.90\left[\mathrm{~d}, J(\mathrm{HH}) 8.4,2 \mathrm{H}, \mathrm{H}_{3}\right], 8.00\left[\mathrm{~d}, J(\mathrm{HH}) 8.4,2 \mathrm{H}, \mathrm{H}_{7}\right]$, 8.07 [d, $\left.J(\mathrm{HH}) 8.0,2 \mathrm{H}, \mathrm{H}_{6}\right], 8.40\left[\mathrm{~d}, J(\mathrm{HH}) 8.6,1 \mathrm{H}, \mathrm{H}_{2}\right]$ ES MS: $980,[\mathrm{M}+\mathrm{H}]^{+}$; $718,\left[\mathrm{M}+\mathrm{H}-\mathrm{PPh}_{3}\right]^{+}$

IR: $v(\mathrm{C} \equiv \mathrm{C}) 2017 \mathrm{~s}, v(\mathrm{CO}) 1718, v(\mathrm{NO}) 1505,1331{ }^{1} \mathrm{H}-\mathrm{NMR}: 3.90(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe})$, $4.22(\mathrm{~s}, 5 \mathrm{H}, \mathrm{Cp}), 6.55\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{6}\right), 6.98\left[\mathrm{t}, J(\mathrm{HP}) 7,12 \mathrm{H}, \mathrm{H}_{\mathrm{m}}\right.$ of $\left.\mathrm{PPh}_{3}\right], 7.15(\mathrm{~m}$, $18 \mathrm{H}, \mathrm{H}_{\mathrm{o}}+\mathrm{H}_{\mathrm{p}}$ of $\left.\mathrm{PPh}_{3}\right), 7.28\left[\mathrm{~d}, J(\mathrm{HH}) 8.6,2 \mathrm{H}, \mathrm{H}_{2}\right], 7.43\left[\mathrm{~d}, J(\mathrm{HH}) 15,1 \mathrm{H}, \mathrm{H}_{4}\right.$ or H_{5}], 7.90 [dd, $J(\mathrm{HH}) 8.6,5.8,2 \mathrm{H}, \mathrm{H}_{3}$], 8.04 [d, $J(\mathrm{HH}) 15,1 \mathrm{H}, \mathrm{H}_{5}$ or H_{4}], 8.14 $\left[\mathrm{d}, J(\mathrm{HH}) 8.6,2 \mathrm{H}, \mathrm{H}_{7}\right] \mathrm{ES}$ MS: 1025, $[\mathrm{M}+\mathrm{H}]^{+} ; 763,\left[\mathrm{M}+\mathrm{H}-\mathrm{PPh}_{3}\right]^{+}$

IR: $v(\mathrm{C} \equiv \mathrm{C}) 2048 \mathrm{~s}, v(\mathrm{CO}) 1718 \mathrm{~s}, v(\mathrm{NO}) 1519 \mathrm{~s}, 1340 \mathrm{~s}, v(\mathrm{PO}) 1025 \mathrm{vs}(\mathrm{br}){ }^{1} \mathrm{H}-\mathrm{NMR}$: $3.51[\mathrm{t}, J(\mathrm{HP}) 12.0,18 \mathrm{H}, \mathrm{OMe}], 3.92\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{Me}\right), 4.90(\mathrm{~s}, 5 \mathrm{H}, \mathrm{Cp}), 7.07$ [d, $\left.J(\mathrm{HH}) 15.8,1 \mathrm{H}, \mathrm{H}_{4}\right], 7.26\left[\mathrm{~d}, J(\mathrm{HH}) 9.0,2 \mathrm{H}, \mathrm{H}_{6}\right], 7.56\left[\mathrm{~d}, J(\mathrm{HH}) 8.2,2 \mathrm{H}, \mathrm{H}_{3}\right]$, 7.77 [d, $\left.J(\mathrm{HH}) 15.8,1 \mathrm{H}, \mathrm{H}_{5}\right], 8.04$ [d, $\left.J(\mathrm{HH}) 8.2,2 \mathrm{H}, \mathrm{H}_{2}\right], 8.17$ [d, $J(\mathrm{HH}) 9.0$, $\left.2 \mathrm{H}, \mathrm{H}_{7}\right]$; ES MS: 749, $[\mathrm{M}+\mathrm{H}]^{+}$

IR: $v(\mathrm{C} \equiv \mathrm{C}) 2027 \mathrm{~s}, v(\mathrm{CO}) 1702 \mathrm{~s}{ }^{1} \mathrm{H}-\mathrm{NMR}: 1.11[\mathrm{t}, J(\mathrm{HH}) 7,3 \mathrm{H}, \mathrm{Me}], 4.24$ [q, $\left.J(\mathrm{HH}) 7,2 \mathrm{H}, \mathrm{CH}_{2}\right], 4.37(\mathrm{~s}, 5 \mathrm{H}, \mathrm{Cp}), 7.00\left(\mathrm{~m}, 18 \mathrm{H}, \mathrm{H}_{\mathrm{m}}+\mathrm{H}_{\mathrm{p}}\right.$ of $\left.\mathrm{PPh}_{3}\right), 7.14(\mathrm{~m}$, $\left.3 \mathrm{H}, \mathrm{H}_{1}+\mathrm{H}_{2}\right), 7.41\left[\mathrm{~d}, J(\mathrm{HH}) 6.5,2 \mathrm{H}, \mathrm{H}_{3}\right], 7.54\left(\mathrm{~m}, 12 \mathrm{H}, \mathrm{H}_{\mathrm{o}}\right.$ of $\left.\mathrm{PPh}_{3}\right), 7.63$ [d, $J(\mathrm{HH}) 8.5,2 \mathrm{H}, \mathrm{H}_{6}$ or H_{7}], 7.64 [d, $J(\mathrm{HH}) 16,1 \mathrm{H}, \mathrm{H}_{4}$ or H_{5}], 7.92 [d, $J(\mathrm{HH}) 16$, $1 \mathrm{H}, \mathrm{H}_{5}$ or H_{4}], 8.39 [d, $J(\mathrm{HH}) 8.5,2 \mathrm{H}, \mathrm{H}_{7}$ or H_{6}] ES MS: 993, M^{+}; 731, $\left[\mathrm{M}-\mathrm{PPh}_{3}\right]^{+}$

Table 1 (Continued)
Spectroscopic data ${ }^{\text {a }}$
$22 \mathrm{Ru}\left\{\mathrm{C} \equiv \mathrm{CC}(=\mathrm{NPh}) \mathrm{CH}=\mathrm{CH}\left(\mathrm{C}_{10} \mathrm{H}_{7}-1\right)\right\}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cp}$ yellow; m.p. $177-179^{\circ} \mathrm{C}$ (dec.) Anal. Found: C, 76.61 ; H, 5.15; $\mathrm{N}, 1.44 . \mathrm{C}_{62} \mathrm{H}_{49} \mathrm{NP}_{2} \mathrm{Ru}$ calc.: C, 76.68; H, 5.09; N, 1.44; M, 971
$23\left[4-\left\{\mathrm{Cp}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Ru}(\mathrm{C} \equiv \mathrm{C})\right\}-2-\mathrm{PhC}_{9} \mathrm{H}_{5} \mathrm{NH}\right]\left[\mathrm{BF}_{4}\right]$ red; m.p. $177^{\circ} \mathrm{C}$ (dec.)
$24\left[4-\left\{\mathrm{Cp}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Ru}(\mathrm{C}=\mathrm{C})\right\}-2-\mathrm{PhC}_{13} \mathrm{H}_{8} \mathrm{NH}\right]\left[\mathrm{PF}_{6}\right]$ black Anal. Found: C, $65.23 ; \mathrm{H}, 4.30 ; \mathrm{N}, 1.2$.
$\mathrm{C}_{62} \mathrm{H}_{48} \mathrm{~F}_{6} \mathrm{NP}_{3}$ Ru. $0.4 \mathrm{CH}_{2} \mathrm{Cl}_{2}$ calc.: C, 65.23 ; H, 4.28;
$\mathrm{N}, 1.22 ; \mathrm{M}, 933$ (solvate observed in NMR)
$25\left[\mathrm{Ru}\left\{\mathrm{C} \equiv \mathrm{CC}(=\mathrm{NHPh}) \mathrm{CH}=\mathrm{CH}\left(\mathrm{C}_{10} \mathrm{H}_{7}-1\right)\right\}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cp}\right]\left[\mathrm{PF}_{6}\right]$ red; m.p. $210-212^{\circ} \mathrm{C}$ (dec.) Anal. Found: C, 67.97; H, 4.77; $\mathrm{N}, 1.32 . \mathrm{C}_{62} \mathrm{H}_{50} \mathrm{~F}_{6} \mathrm{NP}_{3} \mathrm{Ru}$ calc.: $\mathrm{C}, 67.82 ; \mathrm{H}, 4.58$; N, 1.28; M, 972 (for material containing $\sim 15 \%$ 22, as shown by NMR)

26-OTf $\left[4-\left\{\mathrm{Cp}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Ru}(\mathrm{C} \equiv \mathrm{C})\right\}-2-\mathrm{PhC}_{9} \mathrm{H}_{5} \mathrm{NMe}\right][\mathrm{OTf}]$ dark red; m.p. 134-135 ${ }^{\circ} \mathrm{C}$ (dec.) Anal. Found: C, 64.21; H, 4.32; N, 1.24. $\mathrm{C}_{60} \mathrm{H}_{48} \mathrm{~F}_{3} \mathrm{NO}_{3} \mathrm{P}_{2} \mathrm{RuS} .0 .5 \mathrm{CH}_{2} \mathrm{Cl}_{2}$ calc.: C, $64.56 ; \mathrm{H}, 4.39 ; \mathrm{N}, 1.24 ; \mathrm{M}, 934\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ solvate found in NMR)
26- $\mathrm{PF}_{6}\left[4-\left\{\mathrm{Cp}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Ru}(\mathrm{C} \equiv \mathrm{C})\right\}-2-\mathrm{PhC}_{9} \mathrm{H}_{5} \mathrm{NMe}^{2}\right]\left[\mathrm{PF}_{6}\right]$ red
$27\left[\mathrm{Ru}\left\{\mathrm{C} \equiv \mathrm{CC}\left[=\mathrm{N}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)\left\{\mathrm{Au}\left(\mathrm{PPh}_{3}\right)\right\}\right] \mathrm{CH}=\mathrm{CH}-\right.\right.$ $\left.\left.\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)\right\}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cp}\right]\left[\mathrm{PF}_{6}\right]$ dark red Anal. Found: C, 59.61; H, 4.05; N, 1.19. $\mathrm{C}_{78} \mathrm{H}_{67} \mathrm{AuF}_{6} \mathrm{NP}_{3} \mathrm{Ru}$ calc.: C , 60.31 ; H, $4.28 ; \mathrm{N}, 0.90$; M, 1408

IR: $v(\mathrm{C} \equiv \mathrm{C}) 2011 \mathrm{~s}\left[{ }^{1} \mathrm{H}-\mathrm{NMR}: 4.45(\mathrm{~s}, 5 \mathrm{H}, \mathrm{Cp}), 6.96\left(\mathrm{~m}, 18 \mathrm{H}, \mathrm{H}_{\mathrm{m}}+\mathrm{H}_{\mathrm{p}}\right.\right.$ of $\left.\mathrm{PPh}_{3}\right)$, $7.15\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{2}+\mathrm{H}_{12}\right), 7.25\left(\mathrm{~m}, \mathrm{H}_{1}\right.$ or $\mathrm{H}_{3}, \mathrm{H}_{5}+\mathrm{H}_{6}$; resonance coincides with $\left.\mathrm{C}_{6} \mathrm{H}_{6}\right), 7.41\left[\mathrm{t}, J(\mathrm{HH}) 7.5,2 \mathrm{H}, \mathrm{H}_{11}\right], 7.60\left(\mathrm{~m}, 12 \mathrm{H}, \mathrm{H}_{\mathrm{o}}\right.$ of $\left.\mathrm{PPh}_{3}\right), 7.70[\mathrm{~d}, J(\mathrm{HH})$ $7,2 \mathrm{H}, \mathrm{H}_{4}$ or $\left.\mathrm{H}_{7}\right], 7.72\left[\mathrm{~d}, J(\mathrm{HH}) 16,1 \mathrm{H}, \mathrm{H}_{8}\right.$ or $\left.\mathrm{H}_{9}\right], 7.73\left[\mathrm{~d}, J(\mathrm{HH}) 7,1 \mathrm{H}, \mathrm{H}_{7}\right.$ or $\left.\mathrm{H}_{4}\right], 7.80\left[\mathrm{~d}, J(\mathrm{HH}) 7.5,2 \mathrm{H}, \mathrm{H}_{10}\right], 8.02\left[\mathrm{~d}, J(\mathrm{HH}) 8.5,1 \mathrm{H}, \mathrm{H}_{3}\right.$ or $\left.\mathrm{H}_{1}\right], 8.72[\mathrm{~d}$, $J(\mathrm{HH}) 16,1 \mathrm{H}, \mathrm{H}_{9}$ or $\left.\mathrm{H}_{8}\right]$ FAB MS: $972,[\mathrm{M}+\mathrm{H}]^{+} ; 709,\left[\mathrm{M}-\mathrm{PPh}_{3}\right]^{+} ; 633$, $\left.\left[\mathrm{M}+\mathrm{H}-\mathrm{PPh}_{3}-\mathrm{Ph}\right]^{+} ; 429, \mathrm{Ru}\left(\mathrm{PPh}_{3}\right)\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]^{+} ; 154,\left[\mathrm{Ph}_{2}\right]^{+}$

IR: $v(\mathrm{C} \equiv \mathrm{C})$ 2009s, $v(\mathrm{BF})$ 1092vs(br) ${ }^{1} \mathrm{H}-\mathrm{NMR}: 4.56$ (s, 5H, Cp), 7.1-8.5 (m, 40H, aromatic H$)\left(\mathrm{NH}\right.$ not observed) FAB MS: 922, $\left[\mathrm{M}+2 \mathrm{H}-\mathrm{BF}_{4}\right]^{+}$; 659, $\left[\mathrm{M}+\mathrm{H}-\mathrm{BF}_{4}-\mathrm{PPh}_{3}\right]^{+} ; 428,\left[\mathrm{Ru}\left(\mathrm{PPh}_{3}\right)\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]^{+}$
IR: $v(\mathrm{C}=\mathrm{C}) 1988 \mathrm{~s}, v(\mathrm{PF}) 841 \mathrm{vs}(\mathrm{br}){ }^{1} \mathrm{H}-\mathrm{NMR}: 4.65(\mathrm{~s}, 5 \mathrm{H}, \mathrm{Cp}), 7.0-8.4$ (m, 42H, aromatic H$), 11.55\left(\mathrm{~d}, 1 \mathrm{H}\right.$, aromatic H) FAB MS: $969,\left[\mathrm{M}-\mathrm{H}-\mathrm{PF}_{6}\right]^{+}$; 708, $\left[\mathrm{M}-\mathrm{PF}_{6}-\mathrm{PPh}_{3}\right\}^{+} ; 446,\left[\mathrm{M}-\mathrm{H}-\mathrm{PF}_{6}-2 \mathrm{PPh}_{3}\right]^{+} ; 154,\left[\mathrm{Ph}_{2}\right]^{+}$

IR: $v(\mathrm{C} \equiv \mathrm{C}) 1985 \mathrm{~s}, v(\mathrm{PF}) 846 \mathrm{vs}(\mathrm{br}){ }^{1} \mathrm{H}-\mathrm{NMR}: 4.58$ ($\mathrm{s}, 5 \mathrm{H}, \mathrm{Cp}$), 6.9-8.4 (m, 42H, aromatic H), 10.86 [s(br), 1H, NH] FAB MS: 972, $\left[\mathrm{M}-\mathrm{PF}_{6}\right]^{+} ; 710$,
$\left[\mathrm{M}-\mathrm{PF}_{6}-\mathrm{PPh}_{3}\right]^{+} ; 429,\left[\mathrm{Ru}\left(\mathrm{PPh}_{3}\right)\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]^{+} ; 154,\left[\mathrm{Ph}_{2}\right]^{+}$

IR: $v(\mathrm{C} \equiv \mathrm{C}) 2003 \mathrm{~s}{ }^{1} \mathrm{H}-\mathrm{NMR}: 4.12(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}), 4.55(\mathrm{~s}, 5 \mathrm{H}, \mathrm{Cp}), 6.7-8.5(\mathrm{~m}, 40 \mathrm{H}$, aromatic H) FAB MS: 934, $\left[\mathrm{M}-\mathrm{SO}_{3} \mathrm{CF}_{3}\right]^{+} ; 672,\left[\mathrm{M}-\mathrm{SO}_{3} \mathrm{CF}_{3}-\mathrm{PPh}_{3}\right]^{+} ; 154$, $\left[\mathrm{Ph}_{2}\right]^{+}$

IR: $v(\mathrm{C} \equiv \mathrm{C}) 1997 \mathrm{~s} ; ~ v(\mathrm{PF}) 841 \mathrm{vs}(\mathrm{br}){ }^{1} \mathrm{H}-\mathrm{NMR}: 4.07(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}), 4.55(\mathrm{~s}, 5 \mathrm{H}, \mathrm{Cp})$, $6.7-8.5\left(\mathrm{~m}, 40 \mathrm{H}\right.$, aromatic H) FAB MS: 934, $\left[\mathrm{M}-\mathrm{PF}_{6}\right]^{+} ; 672,\left[\mathrm{M}-\mathrm{PF}_{6}-\mathrm{PPh}_{3}\right]^{+}$; 154, $\left[\mathrm{Ph}_{2}\right]^{+}$

IR: $v(\mathrm{C} \equiv \mathrm{C}) 2050 \mathrm{~s}{ }^{1} \mathrm{H}-\mathrm{NMR}: ~ 2.20,2.22(2 \times \mathrm{s}, 6 \mathrm{H}, \mathrm{Me}), 4.38(\mathrm{~s}, 5 \mathrm{H}, \mathrm{Cp})$, $6.95-7.46\left(\mathrm{~m}, 56 \mathrm{H}\right.$, aromatic H) ES MS: $1408, \mathrm{M}^{+} ; 1144,\left[\mathrm{M}-\mathrm{PPh}_{3}\right]^{+} ; 950$, $\left[\mathrm{M}-\mathrm{Au}\left(\mathrm{PPh}_{3}\right)\right]^{+} ; 844,\left[\mathrm{M}-2 \mathrm{PPh}_{3}\right]^{+} ; 684,\left[\mathrm{M}-\mathrm{Au}-2 \mathrm{PPh}_{3}\right]^{+}$
${ }^{\mathrm{a}}$ IR $\left(\mathrm{cm}^{-1}\right)$; NMR: $\delta, J(\mathrm{~Hz})$; MS (m / z). See Scheme 2 for NMR numbering schemes.
ever, with $\mathrm{PhN}=\mathrm{CHC}_{6} \mathrm{H}_{4} \mathrm{CO}_{2} \mathrm{Me}-4$, the PPh_{3} complex 18 was identified as the quinoline, while the $\mathrm{P}(\mathrm{OMe})_{3}$ derivative $\mathbf{1 1}$ is the azabutadienyl, as confirmed by an X-ray structure after provisional identification from the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum.

The reaction with $\mathrm{PhN}=\mathrm{CH}\left(1-\mathrm{C}_{10} \mathrm{H}_{7}\right)$ afforded complex 22, which was assigned the azabutadienyl structure on the basis of the $[\mathrm{M}+\mathrm{H}]^{+}$ion at $m / z 972$ in the ES mass spectrum and by analysis of the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum which contains trans vinylic H atoms at $\delta 7.72$ and 8.72 , showing a typical $J(\mathrm{HH})$ of 16 Hz .

2.3. Reactions with electrophiles

As mentioned above, these complexes are quite basic, even traces of water being sufficient to result in a colour change from yellow or orange to deep red. This colour change can be reversed by addition of a base and is consistent with a reversible protonation of the neutral
complex (Scheme 4). In this regard, there is a similarity with the equilibrium that can be established between alkynyl and vinylidene complexes, e.g. the $\mathrm{p} K_{\mathrm{a}}$ of $\mathrm{Fe}(\mathrm{C} \equiv \mathrm{CMe})\left(\mathrm{PMe}_{3}\right)_{2} \mathrm{Cp}$ is 7.78 [9]. Given the presence of the alkynyl group in the present complexes, we were interested to determine whether $\mathrm{C}(2)$ or the N atom is the more basic centre. Protonation of complexes 1, 10 or 22 with HBF_{4} or HPF_{6} afforded cationic complexes 23-25, of which the latter exhibited an NH resonance at $\delta 10.86$. In addition, the site of protonation as the N atom was further suggested by the presence of $v(\mathrm{C} \equiv \mathrm{C})$ bands in the IR spectra near $1990 \mathrm{~cm}^{-1}$. The lower frequency, compared with the absorption in $\mathbf{1}$, suggests some contribution from the allenylidene mesomer depicted. However, the X-ray structural data gives little support for this idea, the distances within the $\mathrm{Ru}-\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{C}(1)$ fragment (albeit imprecisely) being consistent with those found in the neutral analogues. In no case is there any evidence for electrophilic addition to C_{b} of the alkynyl group.

Methylation of $\mathbf{1}$ was achieved either with methyl triflate or with MeI in the presence of $\mathrm{NH}_{4} \mathrm{PF}_{6}$, from which reactions the OTf and PF_{6} salts, respectively, of the N-methylquinolinium cation 26 were obtained. The retention of the $v(\mathrm{C} \equiv \mathrm{C})$ absorption at $2003 \mathrm{~cm}^{-1}$ serves to indicate that the N atom is the site of methylation in this case also.

Finally, auration of azabutadiene $\mathbf{1 2}$ was achieved by addition of $\mathrm{AuCl}\left(\mathrm{PPh}_{3}\right) / \mathrm{TlPF}_{6}$ to the neutral complex. A rapid reaction ensued, with precipitation of TlCl . From the resulting solution, dark red 27 was isolated, the IR spectrum of which contained $v(\mathrm{C} \equiv \mathrm{C})$ at 2050 cm^{-1}, again suggesting that the N atom is the site of addition of the $\left[\mathrm{Au}\left(\mathrm{PPh}_{3}\right)\right]^{+}$fragment.

2.4. Molecular structures of quinoline and azabutadiene complexes

The crystal and molecular structures of complexes $\mathbf{1 - 3}, \mathbf{6}, \mathbf{8}, \mathbf{1 0}, \mathbf{1 5}, 17$ and $\mathbf{2 3}$ have been determined by single-crystal X-ray methods; those of $\mathbf{2}$ and $\mathbf{1 7}$ were reported in our original communication, but are dis-
cussed here for completeness, atoms being renumbered for consistency. Figs. 1-4 contain plots of molecules of the quinolines $\mathbf{1}-\mathbf{3}, \mathbf{6}$ and $\mathbf{8}$, benzoquinoline $\mathbf{1 0}$, azabutadiene complexes $\mathbf{1 5}$ and $\mathbf{1 7}$ and the cation of $\mathbf{2 3}$. The structural parameters for all complexes determined are collected in Table 2. The metal-ligand fragment $\mathrm{Ru}(\mathrm{C} \equiv \mathrm{C}-)\left(\mathrm{PR}_{3}\right)_{2} \mathrm{Cp}(\mathrm{R}=\mathrm{Ph}$ or OMe$)$ is common to all complexes and is similar to those found to a host of similar complexes. Thus, the familiar distorted octahedral geometry of the Ru atom is achieved by the tridentate Cp ligand $[\mathrm{Ru}-\mathrm{C}(\mathrm{Cp})$ ranges between 2.20(1) and $2.265(3) \AA$, average for all structures $2.23 \AA$, with no significant differences between the PPh_{3} and $\mathrm{P}(\mathrm{OMe})_{3}$ complexes], the two PR_{3} ligands and $\mathrm{C}(12)$ of the alkynyl groups. The $\mathrm{Ru}-\mathrm{PPh}_{3}$ distances are between $2.28(1)$ and $2.319(2) ~ \AA$ (average $2.30 \AA$), the $\mathrm{Ru}-\mathrm{P}(\mathrm{OMe})_{3}$ distances being appreciably shorter at 2.2113-2.2301(9) \AA, while the $\mathrm{Ru}-\mathrm{C}(12)$ separations [ignoring one imprecise value of $1.97(3) \AA$] are found between $1.978(8)$ and $2.015(3) \AA$. The $\mathrm{C}(12)-\mathrm{C}(11)$ triple bond length lies between $1.197(4)$ and $1.220(3) \AA$. Angles at Ru range between $97.25(8)-102.3(4)^{\circ}\left(\mathrm{PPh}_{3}\right)$
(a) NMR numbering for quinolines

(general)
(b) NMR numbering for azabutadienes

(general)

(5)

(17)

(22)

Scheme 2.

Table 2
Selected structural parameters

Complex	1	2	3	6	8	10	15	17	23	$28 P 2_{1} / c$ form (2 molecules)	28 Pna $_{1}$ form (Ref. [12])
Q or A	Q	Q	Q	Q	Q	Q	A	A	Q	(Cl)	(Cl)
R	H	Me-6	H	H	OMe-6	Benzo	OMe-4	$\mathrm{NO}_{2}-3$	H	-	-
R^{\prime}	H	H	$\mathrm{NO}_{2}-4$	$\mathrm{CO}_{2} \mathrm{Me}-4$	$\mathrm{NO}_{2}-4$	H	OMe-4	H	H	-	-
$\mathrm{R}^{\prime \prime}$ in $\mathrm{PR}^{\prime \prime}{ }_{3}$	Ph	Ph	Ph	OMe	OMe	Ph	Ph	Ph	Ph	OMe	OMe
Bond distances (A)											
$\mathrm{Ru}-\mathrm{P}(1)$	2.2954(5)	2.2966(7)	2.2971(8)	2.2113(8)	2.2199(7)	2.293(1)	2.215(1)	2.293(2)	2.30(1)	$\begin{aligned} & 2.225(1) \\ & 2.2301(9) \end{aligned}$	2.234(2)
$\mathrm{Ru}-\mathrm{P}(2)$	$2.3030(6)$	$2.3079(2)$	2.2945(8)	2.2287(8)	2.2114(8)	2.295(1)	2.2133(7)	2.319(2)	2.28(1)	$\begin{aligned} & 2.2285(7) \\ & 2.2230(8) \end{aligned}$	2.199(3)
$\mathrm{Ru}-\mathrm{C}(\mathrm{cp})$	$\begin{aligned} & 2.235- \\ & 2.252(2) \end{aligned}$	$\begin{aligned} & 2.224(3)- \\ & 2.259(4) \end{aligned}$	$\begin{aligned} & 2.219(4)- \\ & 2.253(3) \end{aligned}$	$\begin{aligned} & 2.229- \\ & 2.261(4) \end{aligned}$	$\begin{aligned} & 2.221- \\ & 2.253(3) \end{aligned}$	$\begin{aligned} & 2.223- \\ & 2.251(4) \end{aligned}$	$\begin{aligned} & 2.238(5)- \\ & 2.265(3) \end{aligned}$	$\begin{aligned} & 2.21(1)- \\ & 2.240(7) \end{aligned}$	$\begin{aligned} & 2.20- \\ & 2.24(2) \end{aligned}$	$\begin{aligned} & 2.176(3)- \\ & 2.241(3) \end{aligned}$	
(av.)	2.24	$2.24{ }_{1}$	$2.23{ }_{7}$	$2.24{ }_{7}$	$2.23{ }_{8}$	$2.23{ }_{8}$	2.250	$2.22{ }_{6}$	2.22	2.217	$2.28{ }_{2}$
$\mathrm{Ru}-\mathrm{C}(12)$	1.995 (2)	1.997(3)	1.990(2)	2.012(3)	2.015(2)	2.004(4)	2.001(3)	1.978(8)	1.97(3)	$\begin{aligned} & 2.4307(8) \\ & 2.434(1)^{a} \end{aligned}$	2.393(3) ${ }^{\text {a }}$
$\mathrm{C}(12)-\mathrm{C}(11)$	1.220(3)	1.197(4)	1.219(4)	1.203(4)	1.197(3)	$1.202(5)$	1.220(4)	1.22(1)	1.21(4)		
$\mathrm{C}(11)-\mathrm{C}(1)$	1.422(2)	1.431(4)	1.428(4)	1.432(4)	1.436(3)	1.431(5)	$1.436(4)$	1.43(1)	1.41(4)	-	
$\mathrm{C}(1)-\mathrm{C}(2)$	-	-	-	-	-	-	1.469 (3)	1.48(1)	-	-	
$\mathrm{C}(1)-\mathrm{N}(4)$	-	-	-	-	-	-	1.295(3)	1.280(9)	-	-	
$\mathrm{C}(2)-\mathrm{C}(3)$	-	-	-	-	-	-	1.320 (4)	1.32(1)	-	-	
Bond angles $\left({ }^{\circ}\right.$)											
$\mathrm{P}(1)-\mathrm{Ru}-\mathrm{P}(2)$	101.19(2)	99.00(3)	100.30(3)	94.10(3)	95.79(2)	101.44(4)	93.89(3)	97.25(8)	102.3(4)	$\begin{aligned} & 94.03(3), \\ & 93.96(3) \end{aligned}$	91.2(1)
$\mathrm{P}(1)-\mathrm{Ru}-\mathrm{C}(12)$	91.06(6)	90.30(8)	89.72(9)	87.05(8)	91.36(6)	87.5(1)	89.55(9)	89.7(2)	87(1)	$\begin{aligned} & 92.28(3), \\ & 89.85(4)^{a} \end{aligned}$	$91.8(1)^{\text {a }}$
$\mathrm{P}(2)-\mathrm{Ru}-\mathrm{C}(12)$	87.65(6)	88.78(7)	89.50(8)	91.11(8)	89.13(6)	89.1(1)	90.22(7)	96.0(2)	88(1)	$\begin{aligned} & 93.14(3), \\ & 90.92(3)^{\mathrm{a}} \end{aligned}$	$95.0(1)^{\text {a }}$
$\mathrm{Ru}-\mathrm{C}(12)-\mathrm{C}(11)$	173.9(2)	175.9(3)	174.0(2)	176.8(2)	173.2(2)	174.3(3)	173.9(2)	171.2(6)	175(3)	-	
$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{C}(1)$	171.0(2)	169.4(3)	170.7(3)	176.9(3)	174.6(2)	173.8(4)	178.6(3)	176.9(6)	174(3)	-	
$\mathrm{C}(11)-\mathrm{C}(1)-\mathrm{C}(2)$	-	-	-	-	-	-	118.5(2)	119.6(6)	-	-	
$\mathrm{C}(11)-\mathrm{C}(1)-\mathrm{N}(4)$	-	-	-	-	-	-	125.2(2)	124.2(7)	-	-	
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{N}(4)$	-	-	-	-	-	-	116.2(2)	116.0(8)	-	-	

[^1]

Scheme 3.
and $94.10(3)-95.79(2)^{\circ}\left[\mathrm{P}(\mathrm{OMe})_{3}\right][\mathrm{P}-\mathrm{Ru}-\mathrm{P}]$, paralleling the diminution in $\mathrm{Ru}-\mathrm{P}$ distances, and 87.05(8)$96.0(2)^{\circ} \quad[\mathrm{P}-\mathrm{Ru}-\mathrm{C}(12)]$. The $\mathrm{Ru}-\mathrm{C}(12)-\mathrm{C}(11)$ group is close to linear with angles at $\mathrm{C}(12)$ and $\mathrm{C}(11)$ of between 173.2(2)-176.8(2) and 169.4-178.6(3) ${ }^{\circ}$, respectively. Comparison with the structure of $\mathrm{Ru}(\mathrm{C} \equiv \mathrm{CPh})\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cp}[10]$ shows that the structural parameters of the present complexes do not differ significantly, similar conclusions being drawn from a study of other ethynyl-ruthenium complexes containing extended unsaturated substituents of relevance to their non-linear optical behaviour [11]. Further detailed discussion is unwarranted as a result of the differing precisions of the various structural determinations.

The presence of the quinoline nucleus is quite evident in $\mathbf{1 - 3}, \mathbf{6}, \mathbf{8}$ and $\mathbf{1 0}$, with the location of the nitrogen atom consistent with that expected from the precursor imines. The structural determinations also confirm that the C-aryl substituent is in the 2-position in the quino-

Scheme 4.
line, and the formation of the tricyclic benzo[h]quinoline nucleus in $\mathbf{1 0}$. The close proximity of $\mathrm{H}(13)$ to the $\mathrm{C} \equiv \mathrm{C}$ triple bond, mentioned above, also affects the intra-ring angles, $\mathrm{C}(11)-\mathrm{C}(1)-\mathrm{C}(2,10)$ being $117.7(3)$ and $125.0(3)^{\circ}$, respectively. As can be seen from Fig. 2, the benzoquinoline nucleus is non-planar. The peripheral planes have dihedrals of $8.5(1), 7.2(1)^{\circ}$ to the central plane, with a dihedral between them of $15.2(1)^{\circ}$, the bulk of the distortion being in the peripheral plane pendant to the acetylide and the central plane ($\chi^{2} 433,422$, cf. the outer plane 78.5°). The pendant acetylide atom lies $0.254(6) \AA$ out of the attached ring plane.

In contrast, complexes 15 and 17 (Fig. 3) contain the $\mathrm{Ru}(\mathrm{C} \equiv \mathrm{C}-)\left(\mathrm{PR}_{3}\right)_{2} \mathrm{Cp}$ fragment attached to $\mathrm{C}(2)$ of an $\mathrm{N}=\mathrm{CC}=\mathrm{C}$ chain that has a direct relationship to the parent imine. In the two structures, the substitution pattern of the imine is preserved and for 15, at least, all H atoms have also been resolved. The $\mathrm{C}=\mathrm{N}$ and $\mathrm{C}=\mathrm{C}$ bonds are within the expected ranges and angles at the atoms of the chains are $119.4(7)^{\circ}$ or greater, consistent with the expected sp^{2} hybridisation of these atoms.

The imprecisely determined structure of the protonated complex 23 (Fig. 4) shows a similar metal fragment to those found in the neutral complexes: the presence of the charge does not affect the bond parameters which are consistent with the site of protonation being the N atom of the quinoline, the protonic hydrogen not being directly located in the structural determination; the crystal lattice contains the BF_{4} anion.

In the course of these studies, the structure of a new modification of $\mathrm{RuCl}\left\{\mathrm{P}(\mathrm{OMe})_{3}\right\}_{2} \mathrm{Cp}$, a precursor of the related butatrienylidene cation, was also determined (Fig. 5). In comparison with that of the present monoclinic $\left(P 2_{1} / c\right)$ form, it shows a significant difference in the average $\mathrm{Ru}-\mathrm{P}$ distance $\left(2.21_{7} \AA\right.$ compared with $2.28_{2} \AA$ found for the orthorhombic $\left(\right.$ Pna $\left.2_{1}\right)$ form previously reported [12]). The latter study was recorded using $\mathrm{Cu}-\mathrm{K}_{\alpha}$ radiation, resulting in very large absorption effects that may account for the anomaly. The $\mathrm{Ru}-\mathrm{Cl}$ distance is substantially longer in the present form [2.4307(8) vs. 2.393(3) Å]. Significant differences in the angles subtended at Ru by the Cl and P atoms [92.28(3), 93.15(3), 94.02(3) vs. 91.8(1), 95.0(1), 91.2(1) ${ }^{\circ}$] are also found.

3. Discussion

The chemistry described above is consistent with the intermediacy of the butatrienylidene complex in these reactions; separate experiments demonstrated that the performed complex, obtained from buta-1,3-diyne and $\left[\mathrm{Ru}(\mathrm{THF})\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cp}\right]^{+}$, reacts with the imines to afford the same products. The formation of the quinoline or azabutadiene appears to be a function of the sub-

Fig. 1. Plot of a molecule of (a) $4-\left\{\mathrm{Cp}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Ru}(\mathrm{C} \equiv \mathrm{C})\right\}-2-\mathrm{PhC}_{9} \mathrm{H}_{5} \mathrm{~N} \quad$ (1); (b) $4-\left\{\mathrm{Cp}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Ru}(\mathrm{C} \equiv \mathrm{C})\right\}-6-\mathrm{Me}-2-\mathrm{PhC} \mathrm{C}_{4} \mathrm{~N} \quad$ (2); (c) $4-$ $\left\{\mathrm{Cp}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Ru}(\mathrm{C} \equiv \mathrm{C})\right\}-2-\left(4-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4}\right) \mathrm{C}_{9} \mathrm{H}_{5} \mathrm{~N} \quad$ (3); (d) $4-\left\{\mathrm{Cp}\left[\mathrm{P}(\mathrm{OMe})_{3}\right]_{2} \mathrm{Ru}(\mathrm{C} \equiv \mathrm{C})\right\}-2-\left(4-\mathrm{MeO}_{2} \mathrm{CC}_{6} \mathrm{H}_{4}\right) \mathrm{C}_{9} \mathrm{H}_{5} \mathrm{~N} \quad$ (6) and (e) $\quad 4-\left\{\mathrm{Cp}\left[\mathrm{P}(\mathrm{OMe})_{3}\right]_{2}-\right.$ $\mathrm{Ru}(\mathrm{C} \equiv \mathrm{C})\}-6-\mathrm{MeO}-2-\left(4-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4}\right) \mathrm{C}_{9} \mathrm{H}_{4} \mathrm{~N}(8)$, showing the atom numbering schemes. In this and subsequent Figures, non-hydrogen atoms are shown with 20% thermal envelopes; hydrogen atoms have arbitrary radii of $0.1 \AA$. Settings of the figures correspond to Scheme 2 .
stituents present on the imine and the metal-bonded P-ligand, rather than whether or not the reaction is carried out with performed butatrienylidene complex.

The formation of the products can be understood in terms of reaction of the imine with carbons of differing electronic character, although at this stage we are not
able to determine the sequence of bond formation. Thus, C_{δ} of the butatrienylidene ligand is electron rich and would be expected to attack the imine at the methine carbon. Subsequent reaction of C_{γ}, which is electron deficient, might occur at the electron-rich ortho carbon of the N-aryl group or with the imine N atom.

(d)

Fig. 1. (Continued)

In the former case, formation of a new $\mathrm{C}-\mathrm{C}$ bond results in formation of the bicyclic N-heterocycle, dihydroquinoline, aromatisation of which drives the formal elimination of 2 H (Scheme 1). By virtue of the C-aryl group, substituents on the N-aryl group and the metalligand fragment which becomes attached to $\mathrm{C}(6)$, a variety of polysubstituted quinolines may be formed by this reaction.

The alternative route is followed when electron-withdrawing substituents are present at the meta position of the N-aryl group. These reduce the nucleophilic character of the ortho carbon, resulting in cycloaddition of the $\mathrm{C}_{\gamma}=\mathrm{C}_{\delta}$ unit of the butatrienylidene to the $\mathrm{N}=\mathrm{CH}$ system of the imine and generating a four-membered ring (Scheme 2). The observed product is formed by a subsequent ring-opening reaction, which is reminiscent of and no doubt related to the similar reactions found between alkynyl-metal complexes and electron-deficient olefins [12-14]. The reaction can be directed along this pathway if the electron density in the N-aryl group is reduced, for example, by the presence of electronwithdrawing groups such as NO_{2} or $\mathrm{CO}_{2} \mathrm{Me}$. However, this is not an exclusive condition, since formation of azabutadienes was also found for methyl- and methoxysubstituted systems.

The formation of a quinoline with $\mathrm{PhN}=\mathrm{CHPh}$ in the PPh_{3} system, but the azabutadiene with the $\mathrm{P}(\mathrm{OMe})_{3}$ system, may be related to the degree of electron richness of the metal fragment and thereby to the degree of transfer of electron density along the chain. It is generally accepted that PPh_{3} is a much more basic ligand that $\mathrm{P}(\mathrm{OMe})_{3}$, so that in the former case, the metal centre is more electron rich. In turn, the expectation
would be that C_{β} and C_{δ} of the unsaturated carbon chain would have more nucleophilic character. That this is not the whole story, however, can be seen by comparing these results with those obtained with 4$\mathrm{RC}_{6} \mathrm{H}_{4} \mathrm{~N}=\mathrm{CHC}_{6} \mathrm{H}_{4} \mathrm{R}-4(\mathrm{R}=\mathrm{Me}$, OMe), which uniformly produce the azabutadienes. Further work is necessary to understand fully the course of these interesting reactions and also to devise suitable methods for removal of the metal-containing fragment.
Related chemistry has been described. The reactions between $\mathrm{M}\left(=\mathrm{C}=\mathrm{CR}_{2}\right) \mathrm{L}_{n}\left(\mathrm{ML}_{n}=\mathrm{W}(\mathrm{CO})_{5}, \mathrm{R}=\mathrm{Ph}\right.$ [15]; $\mathrm{Mn}(\mathrm{CO})_{2} \mathrm{Cp}, \mathrm{R}_{2}=\mathrm{H}_{2}$, HMe, HPh [16]; $\mathrm{Re}(\mathrm{CO})_{2} \mathrm{Cp}$, $\mathrm{R}=\mathrm{H}[16] ;[\mathrm{Fe}(\mathrm{CO})(\mathrm{L}) \mathrm{Cp}]^{+}, \mathrm{L}=\mathrm{PPh}_{3}, \mathrm{P}(\mathrm{OMe})_{3} ; \mathrm{R}=$ H , Me [17]) and $\mathrm{RN}=\mathrm{CHPh}(\mathrm{R}=\mathrm{Me}, \mathrm{Ph})$ resulted in cycloaddition of the imine to the $\mathrm{C}_{\alpha}=\mathrm{C}_{\beta}$ double bond to give the corresponding [$2+2$] cycloaddition products. The likely pathway is via initial addition of C_{α} to the N atom, followed by ring closure. η^{4}-Isoquinolinium derivatives have been obtained from alkynes and cycloruthenated complexes derived from dimethylaminomethylbenzenes [18]. Quinoline-2-thiolates have been constructed by cycloaddition of electron deficient alkynes to isothiocyanates [19].

4. Conclusions

The possible intermediacy of cationic butatrienylidene complexes as the products from buta-1,3-diyne and $\left[\mathrm{Ru}(\mathrm{THF})\left(\mathrm{PR}_{3}\right)_{2} \mathrm{Cp}\right]^{+}$is further shown in their subsequent reactions with arylimines which, according to substituent, afford either quinoline or azabutadiene derivatives. The formation of these products can be partially rationalised in terms of cycloaddition of C_{γ}

Fig. 2. Plot of a molecule of $4-\left\{\mathrm{Cp}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Ru}(\mathrm{C} \equiv \mathrm{C})\right\}-2-\mathrm{PhC}_{13} \mathrm{H}_{8} \mathrm{~N}(\mathbf{1 0})$, showing atom numbering scheme.

Fig. 3. Plots of a molecule of (a) $\mathrm{Ru}\left\{\mathrm{C} \equiv \mathrm{CC}\left[=\mathrm{N}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OMe}-4\right)\right] \mathrm{CH}=\mathrm{CH}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OMe}-4\right)\right\}\left\{\mathrm{P}(\mathrm{OMe})_{3}\right\}_{2} \mathrm{Cp}$ (15) and (b) $\mathrm{Ru}\left\{\mathrm{C} \equiv \mathrm{CC}\left[=\mathrm{N}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NO} \mathbf{2}_{2}-\right.\right.\right.$ 3) $] \mathrm{CH}=\mathrm{CHPh}\}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cp}$ (17), showing atom numbering schemes.
and C_{δ} of the unsaturated carbene to either the unsaturated $\mathrm{N}=\mathrm{CH}$ group followed by ring-opening, or by attack at the imine carbon and addition to the ortho carbon of the N-aryl group. These reactions extend the range of reactions reported for this unsaturated carbene ligand, which also include addition of nucleophiles to C_{γ} to give alkenylvinylidenes that may rearrange to allenylidenes [7]. More work is required, however, to delineate the precise effects of substituents and nature of the metal centre on the course of these reactions.

5. Experimental

5.1. General reaction conditions

All reactions were carried out under dry, high-purity nitrogen using standard Schlenk techniques. Solvents were dried, distilled and degassed before use. Light petroleum refers to a fraction of b.p. $60-80^{\circ} \mathrm{C}$. Elemental analyses were by the Canadian Microanalytical Service, Delta, B.C. Preparative TLC was carried out on glass plates $(20 \times 20 \mathrm{~cm})$ coated with silica gel (Merck $60 \mathrm{GF}_{254}, 0.5 \mathrm{~mm}$ thick).

5.2. Instrumentation

Analytical and spectroscopic data are collected in Table 1. IR: Perkin-Elmer 1700X FT-IR; 683 double
beam, NaCl optics; NMR: Gemini 200 (${ }^{1} \mathrm{H}-\mathrm{NMR}$ at $199.975 \mathrm{MHz},{ }^{13} \mathrm{C}-\mathrm{NMR}$ at 50.289 MHz ; Bruker ACP300 (${ }^{1} \mathrm{H}-\mathrm{NMR}$ at $300.13 \mathrm{MHz},{ }^{13} \mathrm{C}-\mathrm{NMR}$ at 75.47 MHz). FAB MS: VG ZAB 2HF, using 3-nitrobenzyl alcohol as matrix, exciting gas Ar, FAB gun voltage 7.5 kV , current 1 mA , accelerating potential 7 kV . Electrospray (ES) MS: The samples were dissolved in methanol, unless otherwise indicated, and injected into a $10 \mu \mathrm{l}$ injection loop attached to a VG Platform II instrument or directly infused, using a syringe pump, into a Finnegan LCQ spectrometer. Nitrogen was used as the drying and nebulising gas. Samples were examined over a range of cone voltages ($20-90 \mathrm{~V}$) to find the best conditions in the former. Chemical aids to ionisation are indicated where used [20].

5.3. Reagents

AgPF_{6} (Pennwalt) and $\mathrm{KO}^{\prime} \mathrm{Bu}$ (Merck) were used as received. The compounds $\mathrm{RuCl}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cp}$ [21], $\left[\mathrm{Ru}(\mathrm{NCMe})\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cp}\right]\left[\mathrm{PF}_{6}\right] \quad$ [22], $\mathrm{AuCl}\left(\mathrm{PPh}_{3}\right)$ [23], $\mathrm{HC} \equiv \mathrm{CC} \equiv \mathrm{CH}[24]$ and the imines $\mathrm{ArN=}=\mathrm{CHAr}^{\prime}$ [25] were prepared using the cited literature methods.

5.4. General method of preparation

The complexes $\mathrm{RuCl}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cp}$ ($200 \mathrm{mg}, 0.28 \mathrm{mmol}$) or $\mathrm{RuCl}\left\{\mathrm{P}(\mathrm{OMe})_{3}\right\}_{2} \mathrm{Cp}(125 \mathrm{mg}, 0.28 \mathrm{mmol})$ in THF
(50 ml) was treated with AgPF_{6} ($70 \mathrm{mg}, 0.28 \mathrm{mmol}$) and stirred at room temperature (r.t.) for 5 min . The resulting orange solution was cooled to $-94^{\circ} \mathrm{C}$ (MeOH slush bath), then filtered (from precipitated AgCl ; however, the reaction proceeds in similar yield if the AgCl is not removed) into a second flask containing buta-1,3-diyne (0.3 ml of 1.1 M solution in THF, large excess) and the imine (0.56 mmol) in THF (5 ml) at the same temperature. The cold bath was removed and the mixture allowed to warm to r.t. During this time the colour of the solution changed from orange to deep red. The solution was then treated with $\mathrm{KOBu}^{t}(40 \mathrm{mg})$; after 30 min , the solvent was removed. A $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ extract of the residue was purified by column chromatography on $\mathrm{Al}_{2} \mathrm{O}_{3}$, elution with $\mathrm{Et}_{2} \mathrm{O}$ giving a deep yellow band, which afforded the pure product after crystallisation ($\mathrm{Et}_{2} \mathrm{O}$-pentane). In some cases, further purification could be achieved by TLC (silica gel; 3:2 hexane- $\mathrm{CH}_{2} \mathrm{Cl}_{2}$).
In this manner were prepared:

1. $4-\left\{\mathrm{Cp}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Ru}(\mathrm{C} \equiv \mathrm{C})\right\}-2-\mathrm{PhC}_{9} \mathrm{H}_{5} \mathrm{~N}(\mathbf{1})$, from pen-tane- $\mathrm{Et}_{2} \mathrm{O}(41 \%)$. In this case, extraction of the residue (after removal of solvent) with hexane (2 $\mathrm{ml})$ and evaporation gave a pale yellow solid. A THF solution (0.5 ml) of this residue was analysed by GLC (Pye Series 104 Chromatograph, 15% FFAP column, $200^{\circ} \mathrm{C}$, FID detector), both $\mathrm{NHPh}\left(\mathrm{CH}_{2} \mathrm{Ph}\right)$ and unreacted $\mathrm{PhN}=\mathrm{CHPh}$ being confirmed by comparison of retention times with those of standard samples.
2. $4-\left\{\mathrm{Cp}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Ru}(\mathrm{C} \equiv \mathrm{C})\right\}-6-\mathrm{Me}-2-\mathrm{PhC}_{9} \mathrm{H}_{4} \mathrm{~N}$
3. $4-\left\{\mathrm{Cp}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Ru}(\mathrm{C} \equiv \mathrm{C})\right\}-2-\left(4-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4}\right) \mathrm{C}_{9} \mathrm{H}_{5} \mathrm{~N}$ (3), from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexane (54%). If a solution of $\mathbf{3}$ in benzene ($10 \mathrm{mg} / 2 \mathrm{ml}$) was left under sunlight for 30 min , the complex is partly decomposed, to give a black solid.
4. $4-\left\{\mathrm{Cp}\left[\mathrm{P}(\mathrm{OMe})_{3}\right]_{2} \mathrm{Ru}(\mathrm{C} \equiv \mathrm{C})\right\}-2-\left(4-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4}\right) \mathrm{C}_{9} \mathrm{H}_{5} \mathrm{~N}$ (4) (31\%).
5. $4-\left\{\mathrm{Cp}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Ru}(\mathrm{C} \equiv \mathrm{C})\right\}-2-\left(3-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4}\right) \mathrm{C}_{9} \mathrm{H}_{5} \mathrm{~N}$ (5), from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexane (40%). This complex required further purification by chromatography on $\mathrm{Al}_{2} \mathrm{O}_{3}$.
6. $4-\left\{\mathrm{Cp}\left[\mathrm{P}(\mathrm{OMe})_{3}\right]_{2} \mathrm{Ru}(\mathrm{C} \equiv \mathrm{C})\right\}-2-\left(4-\mathrm{MeO}_{2} \mathrm{CC}_{6} \mathrm{H}_{4}\right) \mathrm{C}_{9}-$ $\mathrm{H}_{5} \mathrm{~N}$ (6), from THF-pentane ($22 \mathrm{mg}, 6 \%$; in this case, difficulties in separation from residual imine were experienced).
7. $4-\left\{\mathrm{Cp}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Ru}(\mathrm{C} \equiv \mathrm{C})\right\}-6-\mathrm{MeO}-2-\left(4-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4}\right) \mathrm{C}_{9}-$ $\mathrm{H}_{4} \mathrm{~N}$ (7), from $\mathrm{CH}_{2} \mathrm{Cl}_{2}-$ hexane after rechromatography (41\%).
8. $4-\left\{\mathrm{Cp}\left[\mathrm{P}(\mathrm{OMe})_{3}\right]_{2} \mathrm{Ru}(\mathrm{C} \equiv \mathrm{C})\right\}-6-\mathrm{MeO}-2-\left(4-\mathrm{NO}_{2} \mathrm{C}_{6}-\right.$ $\left.\mathrm{H}_{4}\right) \mathrm{C}_{9} \mathrm{H}_{4} \mathrm{~N}(8)$, from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexane (28%).
9. $4-\left\{\mathrm{Cp}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Ru}(\mathrm{C} \equiv \mathrm{C})\right\}-(5 / 7)-\mathrm{Cl}-2-\mathrm{PhC}_{9} \mathrm{H}_{4} \mathrm{~N}$ (9), from $\mathrm{Et}_{2} \mathrm{O}$-hexane (39%). The ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right)$ showed the presence of two isomers ($\mathbf{9 a}$ and 9b) in $\sim 4: 1$ ratio which could not be separated by chromatography or by recrystallization. Attempts to grow single crystals were unsuccessful. The sample decomposes slowly in solution, even in the dark.
10. $4-\left\{\mathrm{Cp}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Ru}(\mathrm{C} \equiv \mathrm{C})\right\}-2-\mathrm{PhC}_{13} \mathrm{H}_{8} \mathrm{~N} \quad$ (10), from THF-hexane (30%).
11. $\mathrm{Ru}\{\mathrm{C} \equiv \mathrm{CC}(=\mathrm{NPh}) \mathrm{CH}=\mathrm{CHPh}\}\left\{\mathrm{P}(\mathrm{OMe})_{3}\right\}_{2} \mathrm{Cp} \quad$ (11), from $\mathrm{CH}_{2} \mathrm{Cl}_{2}-$ hexane (22%).

Fig. 4. Plot of the cation of $\left[4-\left\{\mathrm{Cp}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Ru}(\mathrm{C}=\mathrm{C})\right\}-2-\mathrm{PhC}_{9} \mathrm{H}_{5} \mathrm{NH}\right]\left[\mathrm{BF}_{4}\right]$ (23), showing atom numbering scheme.

Fig. 5. Plots of the two independent molecules of $\mathrm{RuCl}\{\mathrm{P}-$ $\left.(\mathrm{OMe})_{3}\right\}_{2} \mathrm{Cp}(28)$, showing atom numbering scheme.
14. $\mathrm{Ru}\left\{\mathrm{C} \equiv \mathrm{CC}\left[=\mathrm{N}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OMe}-4\right)\right] \mathrm{CH}=\mathrm{CH}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OMe}-\right.\right.$ $4)\}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cp}(\mathbf{1 4})$, from $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}(39 \%)$.
15. $\mathrm{Ru}\left\{\mathrm{C} \equiv \mathrm{CC}\left[=\mathrm{N}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OMe}-4\right)\right] \mathrm{CH}=\mathrm{CH}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OMe}-\right.\right.$ 4) $\}\left\{\mathrm{P}(\mathrm{OMe})_{3}\right\}_{2} \mathrm{Cp} \quad$ (15) from $\quad \mathrm{CH}_{2} \mathrm{Cl}_{2}-$ hexane (25\%).
16. $\mathrm{Ru}\left\{\mathrm{C} \equiv \mathrm{CC}\left[=\mathrm{N}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}-4\right)\right] \mathrm{CH}=\mathrm{CHPh}\right\}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cp}$ (16), from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexane (34%).
17. $\mathrm{Ru}\left\{\mathrm{C} \equiv \mathrm{CC}\left[=\mathrm{N}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}-3\right)\right] \mathrm{CH}=\mathrm{CHPh}\right\}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cp}$ (17), from $\mathrm{Et}_{2} \mathrm{O}$-hexane in the dark (29%). This compound is sunlight/UV-light sensitive, changing to an unidentified blue species after photolysis.
18. $\mathrm{Ru}\left\{\mathrm{C} \equiv \mathrm{CC}(=\mathrm{NPh}) \mathrm{CH}=\mathrm{CH}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CO}_{2} \mathrm{Me}-4\right)\right\}(\mathrm{PP}-$ $\left.\mathrm{h}_{3}\right)_{2} \mathrm{Cp}$ (18), from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexane (70%).
19. $\mathrm{Ru}\left\{\mathrm{C} \equiv \mathrm{CC}\left[=\mathrm{N}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}-4\right)\right] \mathrm{CH}=\mathrm{CH}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CO}_{2} \mathrm{Me}-\right.\right.$ 4) $\}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cp}(\mathbf{1 9})$, from $\mathrm{CH}_{2} \mathrm{Cl}_{2}-$ hexane (32%).
20. $\mathrm{Ru}\left\{\mathrm{C} \equiv \mathrm{CC}\left[=\mathrm{N}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}-4\right)\right] \mathrm{CH}=\mathrm{CH}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CO}_{2} \mathrm{Me}-\right.\right.$ 4) $\left\{\left\{\mathrm{P}(\mathrm{OMe})_{3}\right\}_{2} \mathrm{Cp}\right.$ (20), from $\mathrm{CH}_{2} \mathrm{Cl}_{2}-$ hexane (24\%).
21. $\mathrm{Ru}\left\{\mathrm{C} \equiv \mathrm{CC}\left[=\mathrm{N}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CO}_{2} \mathrm{Et}-4\right)\right] \mathrm{CH}=\mathrm{CHPh}\right\}\left(\mathrm{PPh}_{3}\right)_{2}-$ Cp (21), from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexane after rechromatography (37%).
22. $\mathrm{Ru}\left\{\mathrm{C} \equiv \mathrm{CC}(=\mathrm{NPh}) \mathrm{CH}=\mathrm{CH}\left(\mathrm{C}_{10} \mathrm{H}_{7}-1\right)\right\}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{C}$ (22), precipitated from $\mathrm{Et}_{2} \mathrm{O}$ with $\mathrm{C}_{6} \mathrm{H}_{6}(34 \%)$.

5.5. Protonation

5.5.1. $\left[4-\left\{C p\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Ru}(\mathrm{C} \equiv \mathrm{C})\right\}-2-\mathrm{PhC}_{9} \mathrm{H}_{5} \mathrm{NH}\right]\left[\mathrm{BF}_{4}\right]$ (23)

A solution of $\mathrm{HBF}_{4}(5 \mathrm{mg}, 0.057 \mathrm{mmol})$ in THF (4 $\mathrm{ml})$ was added to a solution of $\mathbf{1}(50 \mathrm{mg}, 0.054 \mathrm{mmol})$ in THF (5 ml). The solution turned red and the solvent was evaporated to give $\left[4-\left\{\mathrm{Cp}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Ru}(\mathrm{C}=\mathrm{C})\right\}-2-\right.$ $\left.\mathrm{PhC}_{9} \mathrm{H}_{5} \mathrm{NH}\right]\left[\mathrm{BF}_{4}\right]$ (23) ($50 \mathrm{mg}, 84 \%$) as a red solid after washing the solid residue three times with $\mathrm{Et}_{2} \mathrm{O}$.

5.5.2. $\left[4-\left\{C p\left(P P h_{3}\right)_{2} R u(C \equiv C)\right\}-2-P_{13} C_{13} H_{8} N H\right]\left[P F_{6}\right]$

 (24)Two drops of HPF_{6} in $\mathrm{Et}_{2} \mathrm{O}$ were added to a solution of $4-\left\{\mathrm{Cp}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Ru}(\mathrm{C} \equiv \mathrm{C})\right\}-2-\mathrm{PhC}_{13} \mathrm{H}_{8} \mathrm{~N}$ (10) (50 mg , 0.052 mmol) in benzene (10 ml). The solution became red immediately, and a precipitate formed. After evaporation, dissolution in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and precipitation with hexane, $\quad\left[4-\left\{\mathrm{Cp}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Ru}(\mathrm{C} \equiv \mathrm{C})\right\}-2-\mathrm{PhC}_{13} \mathrm{H}_{8} \mathrm{NH}\right]\left[\mathrm{PF}_{6}\right]$ (24) (90%) was obtained as a black solid.

5.5.3. $\left[\mathrm{Ru}\left\{\mathrm{C} \equiv \mathrm{CC}(=\mathrm{NHPh}) \mathrm{CH}=\mathrm{CH}\left(\mathrm{C}_{10} \mathrm{H}_{7}-1\right)\right\}-\right.$ $\left.\left(\mathrm{PPh}_{3}\right)_{2} C p\right]\left[P F_{6}\right]$ (25)

This complex was prepared in 73% yield from $\mathrm{Ru}\left\{\mathrm{C} \equiv \mathrm{CC}(=\mathrm{NPh}) \mathrm{CH}=\mathrm{CH}\left(\mathrm{C}_{10} \mathrm{H}_{7}-1\right)\right\}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cp}$ (22) by the method described above for 24. Analytical and NMR data are consistent with the presence of some neutral 22 in the product.

Table 3
Crystal data and refinement details for complexes

Compound	1	2	3	6	8	10	15	17	23	28
Diffractometer ${ }^{\text {a }}$	AXS	AXS	AXS	AXS	AXS	CAD4	AXS	CAD4	CAD4	AXS
Formula	$\mathrm{C}_{58} \mathrm{H}_{45} \mathrm{NP}_{2} \mathrm{Ru}$	$\mathrm{C}_{59} \mathrm{H}_{47} \mathrm{NP}_{2} \mathrm{Ru}$	$\mathrm{C}_{58} \mathrm{H}_{44} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{P}_{2} \mathrm{Ru}$	$\mathrm{C}_{30} \mathrm{H}_{35} \mathrm{NO}_{8} \mathrm{P}_{2} \mathrm{Ru}$	$\mathrm{C}_{29} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{O}_{9} \mathrm{P}_{2} \mathrm{Ru}$	$\begin{gathered} \mathrm{C}_{62} \mathrm{H}_{47} \mathrm{NP}_{2} \mathrm{Ru} \\ \mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O} \end{gathered}$	$\begin{gathered} \mathrm{C}_{30} \mathrm{H}_{39} \mathrm{NO}_{8} \mathrm{P}_{2} \mathrm{Ru} \\ \cdot 0.5 \mathrm{CH}_{2} \mathrm{Cl}_{2} \end{gathered}$	$\mathrm{C}_{58} \mathrm{H}_{46} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{P}_{2} \mathrm{Ru}$	$\begin{gathered} \mathrm{C}_{58} \mathrm{H}_{46} \mathrm{NP}_{2} \mathrm{Ru}^{+} \\ \cdot \mathrm{BF}_{4}^{-} \cdot \mathrm{Et}_{2} \mathrm{O} \end{gathered}$	$\mathrm{C}_{11} \mathrm{H}_{23} \mathrm{ClO}_{6} \mathrm{P}_{2} \mathrm{Ru}$
$M_{\text {w }}$	919.0	933.1	964.0	700.6	717.6	1041.2	747.1	966.0	1081.0	449.8
Crystal system	Monoclinic	Triclinic	Triclinic	Triclinic	Monoclinic	Monoclinic	Triclinic	Triclinic	Monoclinic	Monoclinic
Space group	$P 2_{1} / n$	$P \overline{1}$	$P \overline{1}$	$P \overline{1}$	$P 2_{1} / n$	$P 2_{1} / c$	$P \overline{1}$	$P \overline{1}$	$P 2_{1} / \mathrm{c}$	$P 2_{1} / \mathrm{c}$
$a(\AA)$	15.958(1)	11.242(1)	13.023(2)	8.216(1)	19.947(4)	11.934(3)	10.0633(8)	19.787(8)	13.697(11)	22.433(1)
b (${ }_{\text {® }}^{\text {® }}$)	16.980(1)	11.402(1)	13.263(2)	12.516(2)	7.867(2)	14.724(3)	12.1873(9)	11.684(3)	23.764(20)	9.3819(7)
$c($ A)	16.553(1)	17.899(2)	14.554(2)	15.741(3)	20.598(4)	31.157(6)	14.9825(10)	10.688(3)	17.038(9)	18.411(1)
$\alpha\left({ }^{\circ}\right)$		87.703(2)	80.841(2)	78.169(3)			90.796(1)	98.26(2)		
$\beta\left({ }^{\circ}\right)$	96.681(1)	82.419(2)	81.407(2)	88.641(3)	100.875(3)	106.03(2)	108.182(1)	101.18(3)	100.37(6)	110.568(1)
$\gamma\left({ }^{\circ}\right)$		86.529(2)	69.541(2)	77.320(3)			102.009(1)	101.39(3)		
$V\left(\AA^{3}\right)$	4455	2269	2313	1545	3174	5262	1701	2333	5455	3628
Z	4	2	2	2	4	4	2	2	4	8
$D_{\text {calc. }}\left(\mathrm{g} \mathrm{cm}^{-3}\right)$	1.370	$1.36{ }_{6}$	1.38	$1.50{ }_{6}$	$1.50{ }_{1}$	1.314	1.458	1.375	1.315	$1.64{ }_{7}$
Crystal size (mm)	$0.20 \times 0.15 \times 0.12$	$0.24 \times 0.20 \times 0.07$	$0.30 \times 0.18 \times 0.12$	$0.25 \times 0.17 \times 0.10$	$0.33 \times 0.25 \times 0.11$	$0.75 \times 0.52 \times 0.20$	$0.61 \times 0.51 \times 0.30$	$0.40 \times 0.12 \times 0.24$	$0.08 \times 0.16 \times 0.14$	$0.55 \times 0.18 \times 0.07$
$T^{\text {a }}$ (min, max)	0.71, 0.86	0.93, 0.98	0.81, 0.91	0.43, 0.56	0.80, 0.89	0.82, 0.93	0.69, 0.83	0.87, 0.94	$0.96,0.97$	0.61, 0.89
$\mu\left(\mathrm{cm}^{-1}\right)$	4.6	4.6	4.5	6.6	6.5	4.0	6.8	4.5	4.0	12.2
$N_{\text {total }}$	52798	27145	26193	17940	36843		18939			42311
$N\left(R_{\text {int }}\right)$	11440 (0.034)	11314 (0.036)	11268 (0.025)	7507 (0.026)	8004 (0.017)	11792	8285 (0.014)	8225	6436	9070 (0.023)
N_{0}	9171	8372	7560	5648	6570	8421	7206	4544	1315	7389
R	0.034	0.041	0.037	0.036	0.031	0.044	0.041	0.059	0.088	0.031
R_{w}	0.040	0.041	0.037	0.040	0.043	0.048	0.058	0.058	0.076	0.040

${ }^{\text {a }}$ CAD4: single-counter instrument data ($T \sim 295 \mathrm{~K}$; Gaussian absorption correction). AXS: CCD instrument data ($T \sim 300 \mathrm{~K}, 2 \theta_{\text {max }}=58^{\circ}$; empirical absorption correction (SADABS).

5.6. Methylation

5.6.1. [4- $\left.\left\{\mathrm{Cp}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Ru}(\mathrm{C} \equiv \mathrm{C})\right\}-2-\mathrm{Ph}_{9} \mathrm{H}_{5} \mathrm{NMe}\right][\mathrm{OTf}]$ (26-OTf)

An excess of MeOTf ($50 \mu \mathrm{l}, 0.44 \mathrm{mmol}$) was added to a solution of $\mathbf{1}(20 \mathrm{mg}, 0.022 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{ml})$. The solution turned red and was stirred for 10 min before the solvent was evaporated. Reprecipitation from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexane gave $\left[4-\left\{\mathrm{Cp}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Ru}(\mathrm{C} \equiv \mathrm{C})\right\}-2\right.$ $\left.\mathrm{PhC}_{9} \mathrm{H}_{5} \mathrm{NMe}\right][\mathrm{OTf}](26-\mathrm{OTf})$ as a dark red solid (20 mg , 85%).

5.6.2. $\left[4-\left\{C p\left(P P_{3}\right)_{2} R u(C \equiv C)\right\}-2-P h C_{9} H_{5} N M e\right]\left[P F_{6}\right]$ (26-PF ${ }_{6}$)

MeI (0.5 ml , freshly passed through $\mathrm{Al}_{2} \mathrm{O}_{3}$) was added to a solution of $\mathbf{1}(100 \mathrm{mg}, 0.11 \mathrm{mmol})$ in THF $(20 \mathrm{ml})$ and the mixture was degassed. The solution was then refluxed for 8 h , the colour becoming deep redpurple. $\mathrm{NH}_{4} \mathrm{PF}_{6}(20 \mathrm{mg}, 0.12 \mathrm{mmol})$ was added to the mixture which was then stirred for 30 min before removing solvent. The residue was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, addition of hexane giving [4-\{ $\mathrm{Cp}\left(\mathrm{PPh}_{3}\right)_{2}-$ $\left.\mathrm{Ru}(\mathrm{C} \equiv \mathrm{C})\}-2-\mathrm{PhC}_{9} \mathrm{H}_{5} \mathrm{NMe}^{2}\right]\left[\mathrm{PF}_{6}\right]\left(26-\mathrm{PF}_{6}\right)$ as a red solid. Attempts to purify it by reprecipitation were unsuccessful.

5.7. Auration of $\left[\mathrm{Ru}\left\{\mathrm{C} \equiv C C\left[=N\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)\right.\right.\right.$ -
 $\left.\left.\left.\left\{\mathrm{Au}\left(\mathrm{PPh}_{3}\right)\right\}\right] \mathrm{CH}=\mathrm{CH}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)\right\}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cp}\right]\left[\mathrm{PF} F_{6}\right]$

A mixture of $\mathrm{AuCl}\left(\mathrm{PPh}_{3}\right)$ ($54 \mathrm{mg}, 0.11 \mathrm{mmol}$), $\mathrm{Ru}\left\{\mathrm{C} \equiv \mathrm{CC}\left[=\mathrm{N}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)\right] \mathrm{CH}=\mathrm{CH}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)\right\}\left(\mathrm{PPh}_{3}\right)_{2}-$ Cp (12) ($100 \mathrm{mg}, 0.11 \mathrm{mmol}$) and $\mathrm{TlPF}_{6}(38 \mathrm{mg}, 0.11$ $\mathrm{mmol})$ was heated in refluxing THF $(20 \mathrm{ml})$ for 1.5 h . The solution was filtered to remove TlCl and the solvent was removed. Precipitation of the product from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ with hexane gave $\left[\mathrm{Ru}\left\{\mathrm{C} \equiv \mathrm{CC}\left[=\mathrm{N}\left(\mathrm{C}_{6} \mathrm{H}_{4}-\right.\right.\right.\right.$ $\left.\left.\left.\mathrm{Me}-4)\left\{\mathrm{Au}\left(\mathrm{PPh}_{3}\right)\right\}\right] \mathrm{CH}=\mathrm{CH}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)\right\}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cp}\right]\left[\mathrm{PF}_{6}\right]$ (27) $(155 \mathrm{mg}, 91 \%)$ as a dark red solid.

5.8. Structure determinations

Diffraction data were measured in two ways, all instruments being fitted with monochromatic $\mathrm{Mo}-\mathrm{K}_{\alpha}$ radiation sources $\left(\lambda=0.7107_{3} \AA\right)$. (a) Using a single counter/four-circle instrument at ca. $295 \mathrm{~K}, N$ unique data were measured, N_{0} with $I>3 \sigma(I)$ being used in the refinement after analytical absorption correction. (b) Using a Bruker AXS CCD/area detector instrument at ca. $300 \mathrm{~K}, N_{\text {total }}$ reflections were measured, merging, after empirical absorption correction ($R_{\text {int }}$ quoted) to N unique data using the proprietary software SMART/ SAINT/SADABS/XPREP, N_{0} with $F>4 \sigma(F)$ being considered observed and used in the refinement. In all structures an isotropic thermal parameter form was refined for the non-hydrogen atoms, $\left(x, y, z, U_{\text {iso }}\right)_{H}$ being included, constrained at estimated values. Con-
ventional residuals R, R_{w} (statistical weights) on $|F|$ are quoted at convergence; neutral atom complex scattering factors were employed, as was the XTAL 3.4 program system [26]. Pertinent results are given in the figures and tables, full crystallographic data being deposited. Individual variations/idiosyncrasies are cited in Section 5.9 below (Table 3).

5.9. Variata

1, 2. Data were measured at ca. $153 \mathrm{~K} .\left(x, y, z, U_{\mathrm{iso}}\right)_{H}$ were refined for all hydrogen atoms.
3. $\left(x, y, z, U_{\text {iso }}\right)_{H}$ were refined for all hydrogen atoms.
6. Methoxy groups of ligand 1 were modelled with the oxygen atoms each disordered over pairs of sites, separations $0.95(2), 0.68(1), 1.07(1) \AA$, site occupancies of the two sets of components constrained as equal after trial refinement, occupancy $0.69(1)$ and complement.
10. Difference-map residues were modelled as solvent THF, refining to an occupancy of unity, albeit with very high thermal motion.
15. Difference-map residues were modelled as dichloromethane, disposed close to an inversion image, site occupancy set at 0.5 after trial refinement.
17. Data were measured rapidly as the crystal was photosensitive.
23. Available material offered only very small specimens, enabling assignment of broad structural features only via single counter data (the material had deteriorated by the arrival of the CCD facility). Only Ru, P, F were refined with anisotropic thermal parameter forms, difference map residues being modelled as diethyl ether of solvation, site occupancy set at unity after trial refinement, albeit with high thermal motion. The structure determination does not definitively locate the protonating hydrogen atom at $\mathrm{N}(4)$, although the remainder of the geometry is consistent with that.

A new phase of $\mathrm{RuCl}\left\{\mathrm{P}(\mathrm{OMe})_{3}\right\}_{2} \mathrm{Cp}(\mathbf{2 8})$. From one fraction obtained during the purification of $\mathbf{6}$, crystals of $\mathbf{2 8}$ were obtained by vapour diffusion of pentane into a THF solution.

6. Supplementary material

Crystallographic data for the structural analyses have been deposited with the Cambridge Crystallographic Data Centre as CCDC nos. 127434-127443 for compounds 1 (127435), 2 (127436), 3 (127439), 6 (127441), 8 (127442), 10 (127437), 15 (127443), 17 (127438), 23 (127434) and 28 (127440; $P 2_{1} / c$ form). Copies of the information can be obtained free of charge from The Director, CCDC, 12 Union Road, Cambridge CB2 1EZ, England (Fax: + 44-1223-336-033; e-mail: deposit@ccdc.cam.ac.uk or www: http://www.ccdc.ac.uk).

Acknowledgements

We acknowledge preliminary studies of these reactions by Dr Peter Hinterding. Support of this work by the Australian Research Council is gratefully acknowledged. P.J.L. and M.E.S. were the holders of Australian Post-graduate Awards. We thank Professor Brian Nicholson (University of Waikato, Hamilton, New Zealand) for most of the electrospray mass spectra. Johnson Matthey Technology plc, Reading, UK, generously loaned the $\mathrm{RuCl}_{3} \cdot n \mathrm{H}_{2} \mathrm{O}$.

References

[1] (a) M.I. Bruce, A.G. Swincer, Adv. Organomet. Chem. 22 (1983) 59. (b) A.B. Antonova, A.A. Johansson, Usp. Khim. 58 (1989) 693; Russ. Chem. Rev. 58 (1989) 693. (c) M.I. Bruce, Chem. Rev. 91 (1991) 197. (d) H. Werner, Nachr. Chem. Tech. Lab. 40 (1992) 435. (e) H. Werner, J. Organomet. Chem. 475 (1994) 45.
[2] M.I. Bruce, Chem. Rev. 98 (1998) 2797.
[3] (a) B.E.R. Schilling, R. Hoffmann, D.L. Lichtenberger, J. Am. Chem. Soc. 101 (1979) 585. (b) N.M. Kostic, R.F. Fenske, Organometallics 1 (1982) 974.
[4] M.A. Esteruelas, A.V. Gómez, A.M. López, E. Oñate, Organometallics 17 (1998) 3567.
[5] M.A. Esteruelas, A.V. Gómez, A.M. López, E. Oñate, N. Ruiz, Organometallics 17 (1998) 2297.
[6] H. Fischer, F. Leroux, R. Stumpf, G. Roth, Chem. Ber. 129 (1996) 1475.
[7] M.I. Bruce, P. Hinterding, P.J. Low, B.W. Skelton, A.H. White, J. Chem. Soc. Dalton Trans. (1998) 467.
[8] M.I. Bruce, P. Hinterding, M. Ke, P.J. Low, B.W. Skelton, A.H. White, Chem. Commun. (Cambridge) (1997) 715.
[9] A. Davison, J.P. Selegue, J. Am. Chem. Soc. 100 (1978) 7763.
[10] (a) J.M. Wisner, T.J. Bartczak, J.A. Ibers, Inorg. Chim. Acta 100 (1985) 115. (b) M.I. Bruce, M.G. Humphrey, M.R. Snow, E.R.T. Tiekink, J. Organomet. Chem. 314 (1986) 213.
[11] (a) I.R. Whittall, M.G. Humphrey, D.C.R. Hockless, B.W.

Skelton, A.H. White, Organometallics 14 (1995) 3970. (b) I.R. Whittall, M.G. Humphrey, A. Persoons, S. Houbrechts, Organometallics 15 (1996) 1935. (c) I.R. Whittall, M.P. Cifuentes, M.G. Humphrey, B. Luther-Davies, M. Samoc, S. Houbrechts, A. Persoons, G.A. Heath, D.C.R. Hockless, J. Organomet. Chem. 549 (1997) 127.
[12] M.I. Bruce, M.P. Cifuentes, M.R. Snow, E.R.T. Tiekink, J. Organomet. Chem. 359 (1989) 379.
[13] A. Davison, J.P. Solar, J. Organomet. Chem. 166 (1979) C13.
[14] (a) M.I. Bruce, T.W. Hambley, M.R. Snow, A.G. Swincer, Organometallics 4 (1985) 494, 501. (b) M.I. Bruce, P.J. Low, B.W. Skelton, A.H. White, New J. Chem. 22 (1998) 419 and references cited therein.
[15] H. Fischer, A. Schlageter, W. Bidell, A. Früh, Organometallics 10 (1991) 389.
[16] M.R. Terry, L.A. Mercando, C. Kelley, G.L. Geoffroy, P. Nombel, N. Lugan, R. Mathieu, R.L. Ostrander, B.E. OwensWaltermire, A.L. Rheingold, Organometallics 13 (1994) 843.
[17] (a) A.G.M. Barrett, J. Mortier, M. Sabat, M.A. Sturgess, Organometallics 7 (1988) 2553. (b) A.G.M. Barrett, M.A. Sturgess, J. Org. Chem. 52 (1987) 3940. (c) A.G.M. Barrett, M.A. Sturgess, Tetrahedron Lett. 27 (1986) 381. (d) A.G.M. Barrett, C.P. Brock, M.A. Sturgess, Organometallics 4 (1985) 1903.
[18] H.C.V.L. Abbenhuis, M. Pfeffer, J.-P. Sutter, A. de Cian, J. Fischer, H.L. Ji, J.H. Nelson, Organometallics 12 (1993) 4464.
[19] R.D. Adams, L. Chen, W. Wu, Organometallics 12 (1993) 2404.
[20] W. Henderson, J.S. McIndoe, B.K. Nicholson, P.J. Dyson, J. Chem. Soc. Dalton Trans. (1998) 519.
[21] (a) M.I. Bruce, C. Hamiester, A.G. Swincer, R.C. Wallis, Inorg. Synth. 21 (1982) 78. (b) M.I. Bruce, C. Hamiester, A.G. Swincer, R.C. Wallis, Inorg. Synth. 28 (1990) 270.
[22] G.S. Ashby, M.I. Bruce, I.B. Tomkins, R.C. Wallis, Aust. J. Chem. 32 (1979) 1003.
[23] M.I. Bruce, B.K. Nicholson, O. bin Shawkataly, Inorg. Synth. 26 (1989) 324.
[24] L. Brandsma, Preparative Acetylenic Chemistry, second edn., Elsevier, Amsterdam, 1971, p. 122 1988, pp. 179.
[25] L.A. Bigelow, H. Eatough, Organic Syntheses, vol. 1, John Wiley, New York, 1932, p. 73.
[26] S.R. Hall, G.S.D. King, J.M. Stewart (Eds.),The xtal 3.4 Users Manual, University of Western Australia, Lamb, Perth, 1994.

[^0]: * Corresponding author. Tel.: +61-8-83035939; fax: $+61-8$ 83034358.

 E-mail address: michael.bruce@adelaide.edu.au (M.I. Bruce)

[^1]: ${ }^{\text {a }}$ For $\mathrm{C}(12)$, read $\mathrm{Cl} .+$ Ref. [12]. For 15 and 17: angles at $\mathrm{N}(4)$ are $120.3(2), 119.4(7)^{\circ}$; angles at $\mathrm{C}(2)$ are $125.6(2), 124.1(8)^{\circ}$; angles at $\mathrm{C}(3)$ are $126.12(3), 127.2(8)^{\circ}$.

